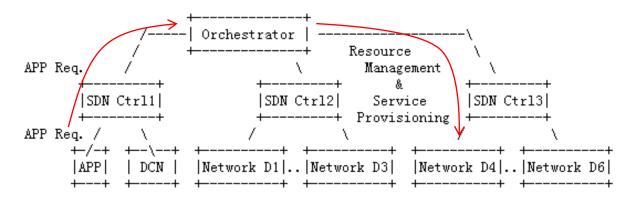
APN6: Application-aware IPv6 Networking

Motivations – Why APN6?

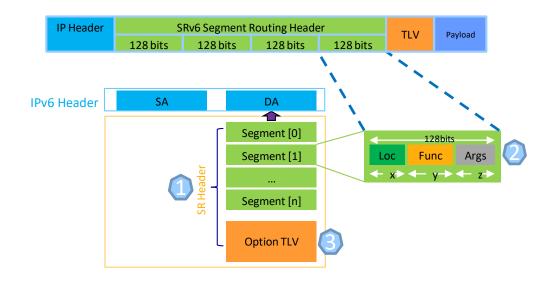

- The network operators need to be able to provide fine-granularity and even applicationlevel SLA guarantee to achieve better Quality of Experience (QoE) for end users
 - 5G and verticals generates more and more applications with diverse network requirements
 - Revenue-producing apps: online gaming, live video streaming, enterprise video conferencing with much more demanding requirements
- Network operators are typically unaware of which applications are traversing their network, which is because network is decoupled from app
 - Not able to provide fine-granularity traffic operations for specific applications
 - Without corresponding revenue increases that might be enabled by differentiated service prov.
- Adding application knowledge to the network layer enables finer granularity requirements of applications to be specified to the network operator (even by app)
- As IPv6 is being widely deployed, the programmability provided by IPv6 encapsulations can be augmented by conveying app info

Challenges of Traditional Differentiated Service Provisioning

- The packets are not able to carry enough information for indicating applications and expressing their service/SLA requirements
- The network devices mainly rely on the 5-tuple of the packets or DPI
 - 5-tuples used for ACL/PBR matching of traffic
 - Indirect application information and not capable enough for new app identification
 - Deep Packet Inspection (DPI)
 - Introduces CAPEX and OPEX and Security/privacy issues
- SDN-based Solution

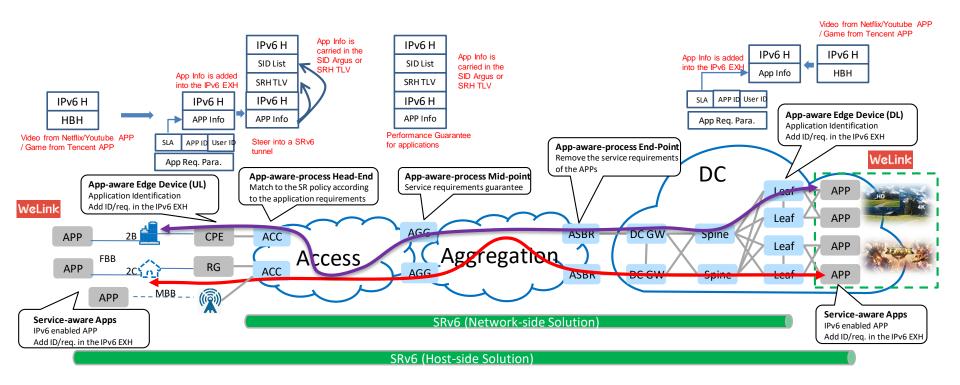
•

- Orchestrator introduces application requirements so that the network is programmed accordingly
 - The loop is long not suitable for fast service provisioning for critical applications
 - Too many interfaces are involved in the loop introducing challenges of inter-operability


How APN can help?

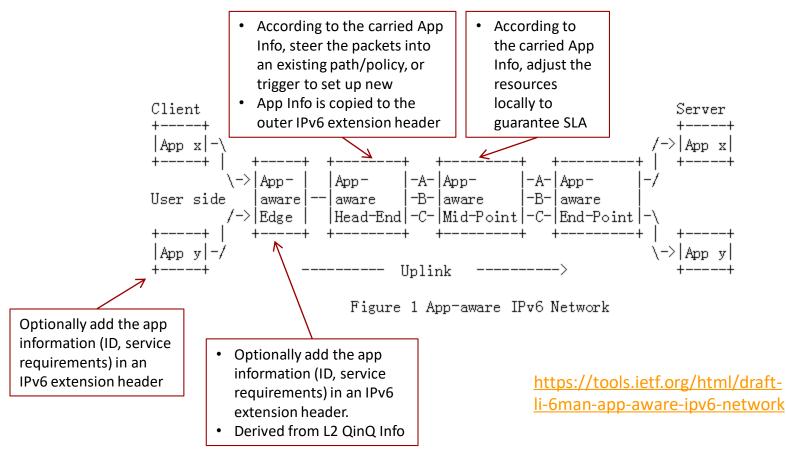
- APN6 aims to
 - satisfy the application-awareness/visibility requirements demanded by new services
 - provide differentiated service treatment and fine-grained traffic operations
- APN6 uses IPv6 network programmability to convey app info in the data plane allowing finer grained requirements from apps to be specified to the network
- APN6
 - conveys the application information into the network infrastructure
 - E.g. application identification, SLA/service requirements
 - allows the network to quickly adapt and perform the necessary actions for SLA guarantees
 - E.g. steer into an SRv6 path with SLA guarantee

Foundations for APN6 - Future-proof Programmability


	IPv6 Extension Headers					
	Version	Traffic Class		Flow Label		
	Payload Length			Next=43	Hop Limit	
	Source Address Destination Address					
¢	Hop-by-Hop Options Header					
¢	Destination Options Header					
¢	Routing Header/SRH					
	 Destination Options Header Payload					

SRv6 SRH: Three Levels of Programmable Space

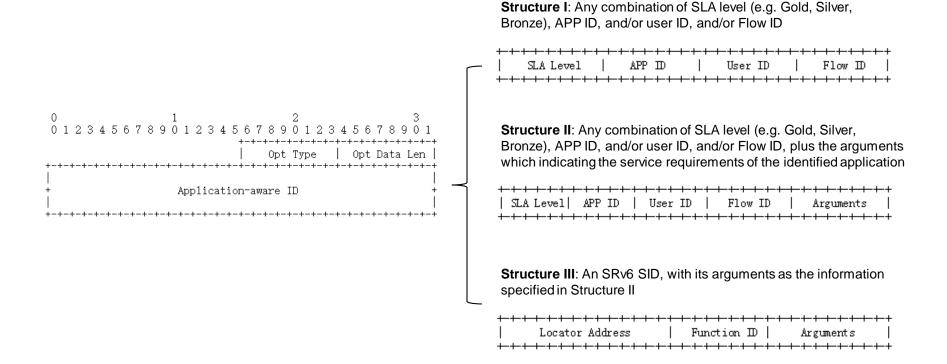
Application-aware IPv6 Networking (APN6)


- Make use of IPv6 extensions header to convey the service requirements along with the packet to the network
- To facilitate the service deployment and network resource adjustment to guarantee SLA for applications

App-aware IPv6 Networking (APN6) Framework

APN6 is to make use of IPv6 Extension Headers

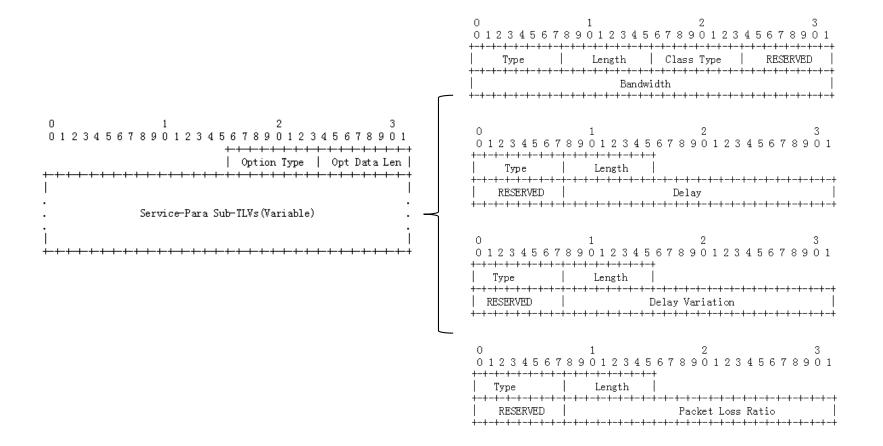
- to convey the application related information including its requirements along with the packet to the network
- to facilitate the service deployment and guarantee SLA

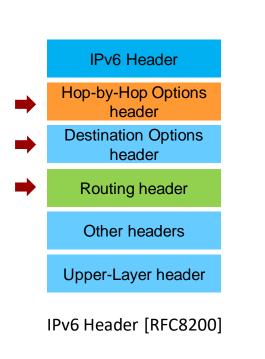


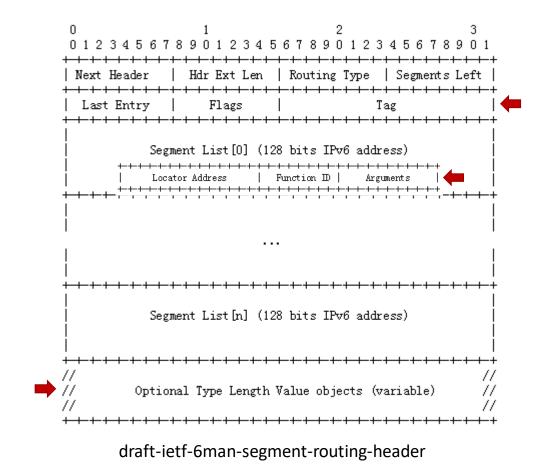
Application-aware Options

- Application-aware ID option
- Service-Para Option

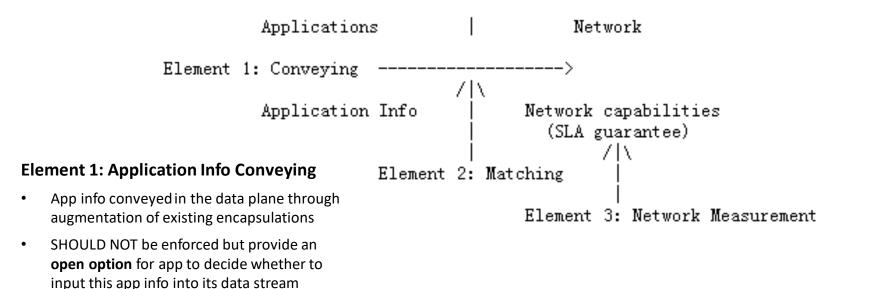
Application-aware ID Option


- Carrying application ID, user ID, flow ID, and service requirements/SLAs
- The length of the APP-aware ID depends on the locations
 - 128bits = IPv6 address = SRv6 SID = A address


9


Service-Para Option

• Carrying the service requirement parameter



Locations for Application-aware Options

APN6 Key Elements

Element 2: App info and network capabilities matching

- Open the network capabilities to apps
- According to the app info, appropriate network services are selected, provisioned, and provided to the demanding applications to satisfy their performance requirements

Element 3: Network performance measurement

 According to the measurement to update the match between the app and corresponding network services for better finegranularity SLA compliance

APN6 Use Cases

•

•

- The use cases that can benefit from the application awareness introduced by APN6
 - Application-aware SLA Guarantee
 - enable to provide differentiated services for various apps and increase revenue accordingly
 - enable network operators to provide fine-granularity SLA guarantees
 - Application-aware network slicing
 - have customized network transport to support some app's specific requirements, considering service and resource isolation
 - serve diverse services and fulfill various requirements of different apps at the same time,
 e.g. the mission critical app can be provisioned over a separate network slice
 - Application-aware Deterministic Networking
 - Match to a demanding app flow into a specific deterministic path
 - Application-aware Service Function Chaining
 - Match to an app flow into a specific SFC and subsequent steering without the need of DPIs
 - Application-aware Network Measurement

Security Considerations

- Since the application information is conveyed into the network, it does involve some security and privacy issues
- APN6 only provides the capability to the apps to provide their profiles and requirements to the network, but it leaves the apps to decide whether to put or not
 - If the applications decide not to provide any information, they will be treated in the same way as today's network and cannot get the benefits from APN6
- Once carried, the IPv6 extension headers, AH and ESP, can be used to guarantee the authenticity of the added application information
- An accurate valuation of security mechanism would be required in order to prevent any leak of critical information
 - Welcome to work together with us
- Some additional considerations may be required for multi-domain use cases.
 - For example, how to agree upon which application information/ID to use and guarantee authenticity for packets traveling through multiple domains (network operators)

The Value of APN6 are Widely Received by Industry

中国移动

HUAWEI

APN6 first presented @ IETF104 APN6 Side Meeting @ IETF105

Attendee: 50+ •

Agenda

- Admin (Chairs) [5:5/75] 1.
- Problem Statement and Requirements (Zhenbin Li) [10:15/75] 2.
- Application-aware Information Conveying 3.
 - Framework of App-aware IPv6 Networking (Shuping Peng) [10:25/75] a)
 - b) Firewall and Service Tickets (Tom Herbert) [10:35/75]
 - SRH Metadata for Simplified Firewall (Jim Guichard) [5:40/75] c)

App-aware Services 4.

- IPv6-based DetNet (Yongqing Zhu) [5:45/75] a)
- SRv6 Path Segment (Fengwei Qin) [5:50/75] b)
- c) IPv6-based IFIT (In-situ Flow Information Telemetry) (Haoyu Song) [5:55/75]

Draft

APN use cases in Game Acceleration draft-zhang-apn-game-acceleration-usecase

Shaping Our Discussion (Chairs and Room) [15:70/75] 5.

Wrap Up (Chairs) [5:75/75] 6.

Topic

https://github.com/APN-Community

Problem statement and use cases

Application-aware IPv6 Networking

Next Step

Area

APN6

IETF BoF/Side Meeting

APN use cases in EC

Thank you!