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Abstract—Multi-access Edge Computing (MEC) is a 
promising business paradigm in the 5G network. The principle 
“the nearest is the best” may not apply in some cases. How to 
break the boundaries among individual MEC sites and leverage 
the computing resources as an integrity, is the key to improve 
the user experience and improve the usage efficiency of 
computing and network resources. This paper proposes CFN-
dyncast, a distributed technique that dispatches clients’ 
demands to an optimal site according to the load of each 
computing site and the network status. This paper also 
introduces the related design considerations, the 
implementation and the evaluation comparing to other load 
balancing techniques. 
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I. INTRODUCTION 

Edge Computing is a paradigm that seeks the optimal 
trade-off between computing, storage, transmission and 
latency. Its deployment forms varies in different scenarios. 
Multi-access edge computing (MEC) is a promising form for 
Internet service providers (ISP). Base stations, central offices 
and other facilities can be used as candidate edges (MEC sites) 
to host third party services. 

However, the deployment of a MEC site often has many 
constraints. Firstly, the location of a MEC site must be chosen 
wisely considering the geographical environment, the 
population nearby, the power supply and the network access. 
Secondly, a MEC site may be limited in its physical size. 
Excluding the space for network devices, power system and 
cooling system, there is little space left for computing devices, 
e.g., servers, NPUs and GPUs. Thus the computing resource 
of each individual MEC site is limited and the ceiling is much 
easier to be touched compared to large data centers.  

When dispatching clients’ demand to a certain service, the 
intuitive idea is to send the demand to the nearest MEC site. 
In this case, the individual sites are considered as silos and 
each site only covers its own neighborhood area. Some sites 
can be saturated easily at peak hours, therefore longer 
response time or even demand dropping can be experienced 
by the users. Meanwhile some other sites may be running idly, 
which is a waste of compute resources and investment. Scale-
out of the saturated sites may not be possible because the 
physical size is limited, and scale-up needs more investment.  

Thus it is necessary to consider the compute resources of 
the MEC sites as a pool and load balancing among them. A 
traditional way to load balance between data centers is DNS-
based. Normally, the DNS server returns an IP address based 
on the geographic location of the client IP or based on pre-
provisioned weights. This technique is static and may cause 
the unbalanced work load on different sites. Some L4 load 
balancer like LVS supports the statistics of connection number 
to service instances based on L4 header inspection, and 
dispatches the client’s demand to the instance that has the least 

connections. Since the L4 load balancer is normally deployed 
inside the data center, where the network condition is thought 
to be equivalent to different instances, the real-time network 
condition is not considered during the dispatch process. 

 The MEC sites at different locations are interconnected 
via the carrier network. The logical distance between MEC 
sites differs, and the network status varies. When load 
balancing among the MEC sites, it is necessary to consider 
both the compute dynamics and the network dynamics. This 
idea argues the job completion time as the summation of the 
computing delay and the network delay. As long as this 
summation is under the tolerance of the client's request, any 
application instance that meets this condition, no matter which 
MEC site it is deployed on, can be the one that serves this 
request. In this way, the capacity of a MEC site could even be 
set to lower than the requirement at peak hours, at the same 
time the gap can be filled by other MEC sites. This solution 
can save investment under the prerequisite of ensuring the user 
experience. 

CFN-dyncast, as proposed in this paper, is a technique that 
follows the resource pooling idea. In CFN-dyncast, a 
dedicated IP address is assigned to each application/service, 
and this address can be used to reach any of the service 
endpoints deploying on the edge. It sounds like traditional 
“anycast in the network”, but it is not the same thing. In 
normal anycast, the packets are always sent to the nearest 
location. In CFN-dyncast, the network is aware of the load of 
each computing site (edge and cloud), thus the network is in 
charge of dispatching the client’s requests to a proper site. 
Since the load of each site and the network status are dynamic, 
this kind of anycast is called “dyncast”, which is short for 
“dynamic anycast”. 

The paper makes the following contributions:  

(1) Design of the CFN-dyncast control plane: collect the 
raw compute load status of the service instances from 
cloud-native platform; advertise load status from 
server to network device; and from device to device, 
via network protocols. 

(2) Design of the CFN-dyncast data plane: choose the 
optimal MEC site when a client’s request arrives, and 
record the decision into a session table to achieve 
session affinity. 

(3) Implementation of a prototype using servers and 
physical network devices. 

(4) Evaluation of the technique and comparison with 
normal DNS and compute-aware DNS, a technique 
dispatches the demands in a centralized way. 

The rest of this paper is organized as follows. Section II 
gives a brief glance of the related works. In Section III, we 
present the key issues that we’ve considered in our design. We 
describe the overall design in section IV. In Section V, we 



present the prototype that we’ve implemented in the 
laboratory environment. In section VI, the implementation is 
evaluated and compared to other load balancing techniques. 
We conclude with some discussion and plans for future work 
in Section VII. 

II. RELATED WORKS 

In 2016, ETSI has published the standard on MEC 
framework and architecture [1], which defines the 
functionality of different modules, such as Multi-access edge 
orchestrator (MEO), Multi-access edge platform manager 
(MEPM), MEC platform (MEP), Data plane and MEC app, 
along with the interfaces between these modules. The project 
EdgeGallery is a reference implementation of ETSI MEC. 

Although the standards for MEC architecture have been 
published for several years, the discussion on the design of 
MEC network just begins recently. Reference [2] analyzes the 
key requirements for the edge computing network 
infrastructure, then divides the infrastructure into three parts: 
ECA (the access network), ECN (the network inside a MEC 
site) and ECI (interconnect network), and suggests key 
technologies for each part. Reference [3] thinks a step further 
and investigates enhanced functionality of the carrier network 
by introducing computing-aware features. Within IETF, the 
CFN related works are emerging. Reference [4] describes the 
use cases and problem statement of CFN and Reference [5] 
gives a primary architectural design of CFN-dyncast. Some 
extensions to network protocols, like BGP and OSPF, are 
proposed to advertise compute metrics inside the network, and 
the related works can be found in Reference [6] and [7]. 
Reference [8] explores the design of CFN over a ICN network 
layer, realizing functionalities like request forwarding, 
caching, and load management. 

III. PROBLEM STATEMENT 

A. Deployment Environment 

The MEC related infrastructure can be divided into three 
parts. Firstly, the access network, which is the network 
infrastructure that the flow goes through from the user system 
to the MEC site, e.g., the campus network, the cellular 
network, PON, 5G UPF and BNG, etc.. Secondly, the 
compute and network devices inside the MEC site, including 
several servers hosting accelerating hardware (GPU, NPU), 
one or two gateways, several switches if needed. Thirdly, the 
network interconnecting the MEC sites, in which tunnels can 
be built among the sites. The tunneling technologies can be 
categorized into overlay (represented by VXLAN and GRE) 
and underlay (represented by SRv6).  

According to ETSI standards, a MEC site runs a MEC 
platform (MEP) to host the service instances. The service 
instances can be deployed inside VMs or containers. The 
MEC operator can choose to use OpenStack (or equivalent) 
and Kubernetes (or equivalent) to orchestrate them. 

B. Considerations 

When design the CFN-dyncast technique, we mainly 
consider the following aspects: 

 Compute status acquisition with application 
granularity. Since different applications can be 
collocated on the same MEC site, they share the same 
compute resources. The status of a server can not 
represent the status of an individual application. 

Therefore it is necessary to acquire the compute status 
at the application level. 

 Compute status advertisement. The compute status is 
acquired on the MEC platform, and the status needs 
to be advertised to the network, including all the 
network devices who need to make the dispatching 
decision. The status at different devices should be 
synchronized so that each device can have the correct 
overall perspective. 

 Backward compatibility. The design should be as less 
invasive as possible, so that most of the infrastructure 
will be left untouched. 

 Session affinity. Once the a client’s demand is 
decided to be dispatched to a certain MEC site, the 
following packets within this session must be sent to 
the same MEC site, so that the session is not 
interrupted. After the current session is accomplished, 
the next demand of the same client, in a new session, 
can be dispatched to another MEC site. 

IV. SOLUTION DESIGN 

A. Overview 

This paper uses the following terminology to facilitate the 
description. 

 CFN router: A network device that is capable to be 
aware of compute metrics and dispatch client’s 
demand accordingly. In MEC scenario, the CFN router 
feature could be implemented on the MEC gateway. 

 Local CFN router: From the perspective of a MEC site, 
it is the CFN router that is responsible to accept the 
compute metric advertisement directly from the cloud 
platform of this particular site. 

 Remote CFN router: From the perspective of a MEC 
site, a CFN router that accepts the compute metrics 
advertisement from the local CFN router of this 
particular site. 

 Ingress CFN router: The first CFN router that a client’s 
demand goes through. Normally, it is the local CFN 
router of the nearest MEC site to the client. It 
encapsulates, if necessary, the original demand with 
outer headers and forwards it to the egress CFN router. 

 Egress CFN router: The CFN router that decapsulates 
the outer header, if exists, and forwards the original 
demand to the destination MEC site. 

Note that the ingress and the egress can be the same device 
if the local (nearest) MEC is the one being selected for this 
demand. 

As shown in Fig. 1., The operational mechanism of the 
control plane and data plane can be divided into the following 
steps. 

 Control Plane 

1) Compute status acquisition: a compute-aware module 
deployed as software, called station daemon, is in 
charge of collecting the compute status like CPU 
usage, memory usage, number of connections from 
the instances of an application, and then calculates a 
compute metric accordingly. The compute metric is a 



scalar value, which represents the workload of a 
certain application deployed on this MEC site. 

2) Advertisement from the MEC platform to the local 
CFN router: the station daemon advertises the 
calculated metric to the local CFN router via a BGP 
speaker. 

3) Advertisement among CFN routers: the local CFN 
router advertises the compute metric to the remote 
CFN routers via network protocol. Each CFN router 
advertises the metric of the site behind it to the others, 
so that every CFN router can have an overall 
perspective of all the related MEC sites. 

4) Update of load balancing table entry: based on the 
overall perspective, each CFN router updates its local 
load balancing table. 

 Data Plane 

1) Arrival of the client’s demand: The first packet from 
the client side arrives at the ingress CFN router. The 
ingress identifies this packet by its destination IP 
address (DIP). If the DIP is one of the pre-provisioned 
addresses, then go to the following steps. If not, the 
packet is forwarded in the ordinary way. 

2) Selection of the MEC site: The ingress CFN router 
finds the optimal MEC site for this demand, according 
to the compute metric of the sites and the related 
network conditions. If the selected MEC site is the 
local one, the egress and the ingress are the same 
router, and the demand can be forwarded directly to 
the local site. If not, the ingress CFN router 
encapsulates the original packet into a tunnel 
destinating the egress CFN router. 

3) Setting up the session table: The selection result must 
be recorded to a session table, so that the subsequent 
packets in the same session from this client to this 
application can be forwarded to the same MEC site. 
The related table entry should not be outdated until 
the current session is accomplished. 

4) Delivery to one of the application instances:  The 
egress CFN router decapsulates (if needed) the tunnel 
and forward the original packet to one of the 
application instances. 

B. Compute status acquisition 

Generally, the compute status is not limited to CPU usage, 
memory usage, GPU usage, number of connections, compute 
latency, etc. The status related to different applications can 
also be different, depending on the working principle of the 
application. 

We investigate how to acquire compute status of 
application instances deployed on the cloud-native platform 
such as Kubernetes, namely K8S. On K8S, an application 
server can be instantiated as a set of pods, and each pod can 
be assigned with an amount of compute resources. The pods 
with the same functionality can be abstracted as a service with 
a virtual IP address (cluster IP). The service could be exposed 
externally, so that it can serve the clients’ demands coming 
from the access network. 

Prometheus is one of the mainstream systems to monitor 
the K8S platform and the services deployed on it. Exporters 
can be implemented on demand, and Prometheus is capable to 
scrape the exposed information with a certain sampling rate, 
then stores it in the time series database. Prometheus has an 
HTTP API, which permits to extract data selectively from the 
database.  

In this paper, we design and implement a compute status 
acquisition module, called station daemon. The station 
daemon extracts compute status in application granularity 
from Prometheus, then processes the raw compute status into 
compute metric, a scalar value, to represent the workload of 
an application on its hosting MEC site. The station daemon, 
as the name suggests, is deployed per MEC site. 

C. Compute metric advertisement 

The compute metric advertisement comprises 2 phases. 
Firstly, the metric is advertised from the cloud platform to the 
local CFN router. Secondly, the metric is advertised from local 
CFN router to remote CFN routers. We choose to extend BGP 
protocol to carry the metric, thus only the CFN routers such as 
MEC gateways need to be aware of this extension, and the 
network devices between the CFN routers just need to forward 
the BGP signaling as normal IP packets. Two segments of 
BGP sessions are required: the first one is between a software 
BGP speaker deployed on server to the CFN router, and the 
second one is between two CFN routers or between CFN 
router and the Route Reflector (RR). 

 
Fig. 1. Overview of the CFN-dyncast control plane and data plane 



Then each CFN router can have an overall perspective on 
compute metrics of all the MEC sites. Thus a routing table 
with compute metrics can be built. An example of the table is 
shown in TABLE I. 

TABLE I.  AN EXAMPLE OF THE ROUTING TABLE WITH COMPUTE 
METRICS 

IP Prefix Next Hop Compute Metric 

Anycast IP of APP1 

MEC-1 90 

MEC-2 70 

MEC-n 30 

Anycast IP of APP2 

MEC-1 30 

MEC-3 40 

MEC-n 55 

D. Seission affinity 

Without session affinity, once the compute metrics of sites 
changes, a MEC site different from the current one may be 
selected as the optimal site, consequently the ingress CFN 
router will forward the subsequent packets of the ongoing 
session to this new optimal site. As a result, the current session 
between the client and the application instance is interrupted.  

We use a session table on the ingress CFN router to record 
the selection result, so that the following packet of the session 
can be forwarded to the same MEC site. An example of the 
session table is given in TABLE II. 

TABLE II.  AN EXAMPLE OF THE SESSION TABLE 

Session Identifier 

Egress Timeout SRC_I
P 

DST_I
P 

SRC
_PO
RT 

DST
_PO
RT 

PRO
TO 

Client1 APP1 aaaa bbbb TCP CFN R1 xxx 

Client2 APP2 cccc dddd TCP CFN R3 yyy 

V. PROTOTYPE IMPLEMENTATION 

We set up a testbed to implement and evaluate our design. 
We use Huawei routers and Huawei 2288HV5 server to build 

the testbed. The server has 32 CPU cores@2.10GHz, and is 
installed Ubuntu 18.04 OS.  

As shown in Fig. 2, the testbed includes three MEC sites 
and three CFN Routers (R1, R2, R3) connected to them. The 
site MEC-1 has two servers, while the other two sites have one 
server each. Each MEC site runs K8S as the cloud 
environment, and the application instances are deployed as 
pods on K8S. MEC-1 has 10 pods and the other two sites have 
5 pods each, which is proportionate to the hardware capacity 
of the sites. Every pod is assigned with 6 cores. Each MEC 
site also hosts a Prometheus pod, a station daemon and a BGP 
speaker.  

In the control plane, BGP sessions are set between the 
BGP speaker and the CFN router directly connected to the 
hosting MEC site, and between two CFN routers. The client 
programs which can run in parallel are deployed on three other 
servers. In the data plane, SRv6 tunnels are set between each 
two CFN routers. At the egress CFN router, the function 
End.DX is performed to decapsulate the outer IP header and 
forward the internal packet to the destination MEC site. 

We also implement a compute-intensive application, in 
which the client side sends out requests with parameters and 
the server side does the calculation and returns the result. Thus 
the CPU usage of the pods can be chosen as the raw compute 
status of this application. The station daemon processes the 
raw status and normalizes it into the compute metric of MEC 
site. 

DNS is one of the widely used load balancing techniques 
among sites across wide area network. We would like to 
compare CFN-dyncast to DNS-based dispatching schemes, in 
which the clients need to send DNS request to find a MEC site 
if its local cache expires. We implement a real DNS server 
based on CoreDNS which provides address records of the 
MEC sites. Besides the native DNS, we also implement a 
“compute-aware DNS”: the etcd plugin of CoreDNS is 
enabled, and CFN Daemon publishes records to etcd based on 
the local compute metric. The number of records is inversely 
proportional to the compute metric, realizing a DNS server 
with dynamic weights related to compute metrics of the MEC 
sites. 

 
Fig. 2. Illustration of the testbed 

 



As a summary, there are three dispatching schemes 
implemented on our testbed:  

 Native DNS: The weights of the records are set 
statically based on the capacities of MEC sites. The 
weight is set to 2:1:1 on our testbed. 

 Compute-aware DNS: The weights of the records are 
set dynamically, based on the compute metric. 

 CFN-dyncast: All the instances of an application are 
hidden behind an anycast IP, the MEC sites’ addresses 
are not visible by the clients. The CFN routers are 
responsible to dispatch the clients’ demands. 

In addition, to visualize the compute metrics of 
applications in multiple MEC sites, we persist all the acquired 
compute status and the compute metrics into Influx DB. Then 
we develop a Dashboard base on Grafana to read data from 
the database and provides visualization. 

VI. EVALUATION AND ANALYSIS 

In the evaluation, we have 71 clients running in parallel: 
one of them is selected for observation, and the rest are used 
as background workload. Each client will send out a series of 
demands. 

We use the job completion time (JCT) as the performance 
indicator. It is defined as the time duration that the client has 
to spend until it gets the response from the server. In CFN-
dyncast, the anycast IP keeps the same, and this address can 
be acquired via one time DNS request or even be provisioned 
a priori at the client. For DNS-based dispatching schemes, the 
client has to send a DNS request to decide the destination 
MEC site to which to send the demand, every time the local 
DNS cache expires. The DNS cache timeout for native DNS 
is set to 60s, and for compute-aware DNS, it is set to 15s. 

The testbed runs three times with all the same clients’ 
demands, but separately dispatched by the three schemes 
described above. Each test lasts for more than 20 minutes, and 
we obtain more than 8000 data records in each test, i.e., more 
than 8000 JCT data points. 

As shown in Fig.3, the average JCT for Native DNS 
scheme is 175.87ms, for Compute-aware DNS is 179.07ms, 
and for CFN-dyncast is 149.54ms. In summary, CFN-dyncast 
scheme can shorten the average JCT by about 15%. 

More details can be found in TABLE III. With CFN-
dyncast, the span between the upper and lower bound of JCT 
is shorten by 34% compared to native DNS and 24% 

compared to compute-aware DNS. This result shows that the 
CFN-dyncast gains a more concentrated JCT distribution. 

TABLE III.  PERFROMENCE COMPARISON 

 Native DNS 
Compute-
aware DNS 

CFN-dyncast 

Average JCT 
(ms) 

175.87 179.07 149.54 

Span between 
the upper and 
lower JCT 
bound (ms) 

110.259 95.449 72.256 

No. of 
completed job 
within 20min 

7236 7278 7989 

 

The number of completed jobs within the first 20 minutes 
is counted. It can be found out that the number of completed 
requests per unit time increased by about 10% when CFN-
dyncast is used. 

We analyzed the reason why CFN scheme performs better 
than DNS-based schemes. There are two main reasons: a) 
CFN just spends time on at most a single DNS request. And 
for compute-aware DNS, the client has to initiate DNS request 
once its local DNS cache expires, which add extra time to the 
JCT. b) The optimal MEC site in a client’s local DNS cache 
can be outdated. Before the cache expires, the actual optimal 
MEC changes to another one, while the client keep sending 
requests to an outdated and suboptimal site, which leads to 
longer JCT. 

In addition, we observe the curves of compute metric of 
the three sites dispatched by CFN-dyncast. As shown in Fig. 
4. although the capability of the sites are greatly different, the 
compute metrics are converged to almost the same value after 
4 minutes, which shows the computing payload of the 
application are balanced well among the sites. 

VII. CONCLUSION 

Integrated design of computing and network in the edge 
computing scenarios is emerging. In this paper, we design and 
implement CFN-dyncast, a technique that aims to load 
balance the MEC sites in consideration of the compute status 
in application granularity and the network conditions. 
Evaluation result shows that CFN-dyncast is capable to 
dynamically maintain the load of different MEC sites at the 
same level. Compared to centralized dispatching schemes, 
CFN-dyncast helps the clients get replied by the servers in a 
shorten period. Limited to the current lab environment, the 
difference of network conditions between each two CFN 
routers is not remarkable. For next steps, we will try to 
evaluate CFN-dyncast on wide area network, in which the 
network condition could be more decisive. 

 

 
Fig. 3. Job completion time under different dispatching schemes 

 

 
Fig. 4. Compute metric of MEC sites 
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