
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

CFN-dyncast: Load Balancing the Edges via the
Network

Bing Liu, Jianwei Mao, Ling Xu, Ruizhao Hu, Xia Chen
Huawei Technologies Co., Ltd.

China

Abstract—Multi-access Edge Computing (MEC) is a
promising business paradigm in the 5G network. The principle
“the nearest is the best” may not apply in some cases. How to
break the boundaries among individual MEC sites and leverage
the computing resources as an integrity, is the key to improve
the user experience and improve the usage efficiency of
computing and network resources. This paper proposes CFN-
dyncast, a distributed technique that dispatches clients’
demands to an optimal site according to the load of each
computing site and the network status. This paper also
introduces the related design considerations, the
implementation and the evaluation comparing to other load
balancing techniques.

Keywords—Compute first networking, Multi-access Edge
Computing, Load Balancing, Carrier Network, Computing-aware

I. INTRODUCTION

Edge Computing is a paradigm that seeks the optimal
trade-off between computing, storage, transmission and
latency. Its deployment forms varies in different scenarios.
Multi-access edge computing (MEC) is a promising form for
Internet service providers (ISP). Base stations, central offices
and other facilities can be used as candidate edges (MEC sites)
to host third party services.

However, the deployment of a MEC site often has many
constraints. Firstly, the location of a MEC site must be chosen
wisely considering the geographical environment, the
population nearby, the power supply and the network access.
Secondly, a MEC site may be limited in its physical size.
Excluding the space for network devices, power system and
cooling system, there is little space left for computing devices,
e.g., servers, NPUs and GPUs. Thus the computing resource
of each individual MEC site is limited and the ceiling is much
easier to be touched compared to large data centers.

When dispatching clients’ demand to a certain service, the
intuitive idea is to send the demand to the nearest MEC site.
In this case, the individual sites are considered as silos and
each site only covers its own neighborhood area. Some sites
can be saturated easily at peak hours, therefore longer
response time or even demand dropping can be experienced
by the users. Meanwhile some other sites may be running idly,
which is a waste of compute resources and investment. Scale-
out of the saturated sites may not be possible because the
physical size is limited, and scale-up needs more investment.

Thus it is necessary to consider the compute resources of
the MEC sites as a pool and load balancing among them. A
traditional way to load balance between data centers is DNS-
based. Normally, the DNS server returns an IP address based
on the geographic location of the client IP or based on pre-
provisioned weights. This technique is static and may cause
the unbalanced work load on different sites. Some L4 load
balancer like LVS supports the statistics of connection number
to service instances based on L4 header inspection, and
dispatches the client’s demand to the instance that has the least

connections. Since the L4 load balancer is normally deployed
inside the data center, where the network condition is thought
to be equivalent to different instances, the real-time network
condition is not considered during the dispatch process.

 The MEC sites at different locations are interconnected
via the carrier network. The logical distance between MEC
sites differs, and the network status varies. When load
balancing among the MEC sites, it is necessary to consider
both the compute dynamics and the network dynamics. This
idea argues the job completion time as the summation of the
computing delay and the network delay. As long as this
summation is under the tolerance of the client's request, any
application instance that meets this condition, no matter which
MEC site it is deployed on, can be the one that serves this
request. In this way, the capacity of a MEC site could even be
set to lower than the requirement at peak hours, at the same
time the gap can be filled by other MEC sites. This solution
can save investment under the prerequisite of ensuring the user
experience.

CFN-dyncast, as proposed in this paper, is a technique that
follows the resource pooling idea. In CFN-dyncast, a
dedicated IP address is assigned to each application/service,
and this address can be used to reach any of the service
endpoints deploying on the edge. It sounds like traditional
“anycast in the network”, but it is not the same thing. In
normal anycast, the packets are always sent to the nearest
location. In CFN-dyncast, the network is aware of the load of
each computing site (edge and cloud), thus the network is in
charge of dispatching the client’s requests to a proper site.
Since the load of each site and the network status are dynamic,
this kind of anycast is called “dyncast”, which is short for
“dynamic anycast”.

The paper makes the following contributions:

(1) Design of the CFN-dyncast control plane: collect the
raw compute load status of the service instances from
cloud-native platform; advertise load status from
server to network device; and from device to device,
via network protocols.

(2) Design of the CFN-dyncast data plane: choose the
optimal MEC site when a client’s request arrives, and
record the decision into a session table to achieve
session affinity.

(3) Implementation of a prototype using servers and
physical network devices.

(4) Evaluation of the technique and comparison with
normal DNS and compute-aware DNS, a technique
dispatches the demands in a centralized way.

The rest of this paper is organized as follows. Section II
gives a brief glance of the related works. In Section III, we
present the key issues that we’ve considered in our design. We
describe the overall design in section IV. In Section V, we

present the prototype that we’ve implemented in the
laboratory environment. In section VI, the implementation is
evaluated and compared to other load balancing techniques.
We conclude with some discussion and plans for future work
in Section VII.

II. RELATED WORKS

In 2016, ETSI has published the standard on MEC
framework and architecture [1], which defines the
functionality of different modules, such as Multi-access edge
orchestrator (MEO), Multi-access edge platform manager
(MEPM), MEC platform (MEP), Data plane and MEC app,
along with the interfaces between these modules. The project
EdgeGallery is a reference implementation of ETSI MEC.

Although the standards for MEC architecture have been
published for several years, the discussion on the design of
MEC network just begins recently. Reference [2] analyzes the
key requirements for the edge computing network
infrastructure, then divides the infrastructure into three parts:
ECA (the access network), ECN (the network inside a MEC
site) and ECI (interconnect network), and suggests key
technologies for each part. Reference [3] thinks a step further
and investigates enhanced functionality of the carrier network
by introducing computing-aware features. Within IETF, the
CFN related works are emerging. Reference [4] describes the
use cases and problem statement of CFN and Reference [5]
gives a primary architectural design of CFN-dyncast. Some
extensions to network protocols, like BGP and OSPF, are
proposed to advertise compute metrics inside the network, and
the related works can be found in Reference [6] and [7].
Reference [8] explores the design of CFN over a ICN network
layer, realizing functionalities like request forwarding,
caching, and load management.

III. PROBLEM STATEMENT

A. Deployment Environment

The MEC related infrastructure can be divided into three
parts. Firstly, the access network, which is the network
infrastructure that the flow goes through from the user system
to the MEC site, e.g., the campus network, the cellular
network, PON, 5G UPF and BNG, etc.. Secondly, the
compute and network devices inside the MEC site, including
several servers hosting accelerating hardware (GPU, NPU),
one or two gateways, several switches if needed. Thirdly, the
network interconnecting the MEC sites, in which tunnels can
be built among the sites. The tunneling technologies can be
categorized into overlay (represented by VXLAN and GRE)
and underlay (represented by SRv6).

According to ETSI standards, a MEC site runs a MEC
platform (MEP) to host the service instances. The service
instances can be deployed inside VMs or containers. The
MEC operator can choose to use OpenStack (or equivalent)
and Kubernetes (or equivalent) to orchestrate them.

B. Considerations

When design the CFN-dyncast technique, we mainly
consider the following aspects:

 Compute status acquisition with application
granularity. Since different applications can be
collocated on the same MEC site, they share the same
compute resources. The status of a server can not
represent the status of an individual application.

Therefore it is necessary to acquire the compute status
at the application level.

 Compute status advertisement. The compute status is
acquired on the MEC platform, and the status needs
to be advertised to the network, including all the
network devices who need to make the dispatching
decision. The status at different devices should be
synchronized so that each device can have the correct
overall perspective.

 Backward compatibility. The design should be as less
invasive as possible, so that most of the infrastructure
will be left untouched.

 Session affinity. Once the a client’s demand is
decided to be dispatched to a certain MEC site, the
following packets within this session must be sent to
the same MEC site, so that the session is not
interrupted. After the current session is accomplished,
the next demand of the same client, in a new session,
can be dispatched to another MEC site.

IV. SOLUTION DESIGN

A. Overview

This paper uses the following terminology to facilitate the
description.

 CFN router: A network device that is capable to be
aware of compute metrics and dispatch client’s
demand accordingly. In MEC scenario, the CFN router
feature could be implemented on the MEC gateway.

 Local CFN router: From the perspective of a MEC site,
it is the CFN router that is responsible to accept the
compute metric advertisement directly from the cloud
platform of this particular site.

 Remote CFN router: From the perspective of a MEC
site, a CFN router that accepts the compute metrics
advertisement from the local CFN router of this
particular site.

 Ingress CFN router: The first CFN router that a client’s
demand goes through. Normally, it is the local CFN
router of the nearest MEC site to the client. It
encapsulates, if necessary, the original demand with
outer headers and forwards it to the egress CFN router.

 Egress CFN router: The CFN router that decapsulates
the outer header, if exists, and forwards the original
demand to the destination MEC site.

Note that the ingress and the egress can be the same device
if the local (nearest) MEC is the one being selected for this
demand.

As shown in Fig. 1., The operational mechanism of the
control plane and data plane can be divided into the following
steps.

 Control Plane

1) Compute status acquisition: a compute-aware module
deployed as software, called station daemon, is in
charge of collecting the compute status like CPU
usage, memory usage, number of connections from
the instances of an application, and then calculates a
compute metric accordingly. The compute metric is a

scalar value, which represents the workload of a
certain application deployed on this MEC site.

2) Advertisement from the MEC platform to the local
CFN router: the station daemon advertises the
calculated metric to the local CFN router via a BGP
speaker.

3) Advertisement among CFN routers: the local CFN
router advertises the compute metric to the remote
CFN routers via network protocol. Each CFN router
advertises the metric of the site behind it to the others,
so that every CFN router can have an overall
perspective of all the related MEC sites.

4) Update of load balancing table entry: based on the
overall perspective, each CFN router updates its local
load balancing table.

 Data Plane

1) Arrival of the client’s demand: The first packet from
the client side arrives at the ingress CFN router. The
ingress identifies this packet by its destination IP
address (DIP). If the DIP is one of the pre-provisioned
addresses, then go to the following steps. If not, the
packet is forwarded in the ordinary way.

2) Selection of the MEC site: The ingress CFN router
finds the optimal MEC site for this demand, according
to the compute metric of the sites and the related
network conditions. If the selected MEC site is the
local one, the egress and the ingress are the same
router, and the demand can be forwarded directly to
the local site. If not, the ingress CFN router
encapsulates the original packet into a tunnel
destinating the egress CFN router.

3) Setting up the session table: The selection result must
be recorded to a session table, so that the subsequent
packets in the same session from this client to this
application can be forwarded to the same MEC site.
The related table entry should not be outdated until
the current session is accomplished.

4) Delivery to one of the application instances: The
egress CFN router decapsulates (if needed) the tunnel
and forward the original packet to one of the
application instances.

B. Compute status acquisition

Generally, the compute status is not limited to CPU usage,
memory usage, GPU usage, number of connections, compute
latency, etc. The status related to different applications can
also be different, depending on the working principle of the
application.

We investigate how to acquire compute status of
application instances deployed on the cloud-native platform
such as Kubernetes, namely K8S. On K8S, an application
server can be instantiated as a set of pods, and each pod can
be assigned with an amount of compute resources. The pods
with the same functionality can be abstracted as a service with
a virtual IP address (cluster IP). The service could be exposed
externally, so that it can serve the clients’ demands coming
from the access network.

Prometheus is one of the mainstream systems to monitor
the K8S platform and the services deployed on it. Exporters
can be implemented on demand, and Prometheus is capable to
scrape the exposed information with a certain sampling rate,
then stores it in the time series database. Prometheus has an
HTTP API, which permits to extract data selectively from the
database.

In this paper, we design and implement a compute status
acquisition module, called station daemon. The station
daemon extracts compute status in application granularity
from Prometheus, then processes the raw compute status into
compute metric, a scalar value, to represent the workload of
an application on its hosting MEC site. The station daemon,
as the name suggests, is deployed per MEC site.

C. Compute metric advertisement

The compute metric advertisement comprises 2 phases.
Firstly, the metric is advertised from the cloud platform to the
local CFN router. Secondly, the metric is advertised from local
CFN router to remote CFN routers. We choose to extend BGP
protocol to carry the metric, thus only the CFN routers such as
MEC gateways need to be aware of this extension, and the
network devices between the CFN routers just need to forward
the BGP signaling as normal IP packets. Two segments of
BGP sessions are required: the first one is between a software
BGP speaker deployed on server to the CFN router, and the
second one is between two CFN routers or between CFN
router and the Route Reflector (RR).

Fig. 1. Overview of the CFN-dyncast control plane and data plane

Then each CFN router can have an overall perspective on
compute metrics of all the MEC sites. Thus a routing table
with compute metrics can be built. An example of the table is
shown in TABLE I.

TABLE I. AN EXAMPLE OF THE ROUTING TABLE WITH COMPUTE
METRICS

IP Prefix Next Hop Compute Metric

Anycast IP of APP1

MEC-1 90

MEC-2 70

MEC-n 30

Anycast IP of APP2

MEC-1 30

MEC-3 40

MEC-n 55

D. Seission affinity

Without session affinity, once the compute metrics of sites
changes, a MEC site different from the current one may be
selected as the optimal site, consequently the ingress CFN
router will forward the subsequent packets of the ongoing
session to this new optimal site. As a result, the current session
between the client and the application instance is interrupted.

We use a session table on the ingress CFN router to record
the selection result, so that the following packet of the session
can be forwarded to the same MEC site. An example of the
session table is given in TABLE II.

TABLE II. AN EXAMPLE OF THE SESSION TABLE

Session Identifier

Egress Timeout SRC_I
P

DST_I
P

SRC
_PO
RT

DST
_PO
RT

PRO
TO

Client1 APP1 aaaa bbbb TCP CFN R1 xxx

Client2 APP2 cccc dddd TCP CFN R3 yyy

V. PROTOTYPE IMPLEMENTATION

We set up a testbed to implement and evaluate our design.
We use Huawei routers and Huawei 2288HV5 server to build

the testbed. The server has 32 CPU cores@2.10GHz, and is
installed Ubuntu 18.04 OS.

As shown in Fig. 2, the testbed includes three MEC sites
and three CFN Routers (R1, R2, R3) connected to them. The
site MEC-1 has two servers, while the other two sites have one
server each. Each MEC site runs K8S as the cloud
environment, and the application instances are deployed as
pods on K8S. MEC-1 has 10 pods and the other two sites have
5 pods each, which is proportionate to the hardware capacity
of the sites. Every pod is assigned with 6 cores. Each MEC
site also hosts a Prometheus pod, a station daemon and a BGP
speaker.

In the control plane, BGP sessions are set between the
BGP speaker and the CFN router directly connected to the
hosting MEC site, and between two CFN routers. The client
programs which can run in parallel are deployed on three other
servers. In the data plane, SRv6 tunnels are set between each
two CFN routers. At the egress CFN router, the function
End.DX is performed to decapsulate the outer IP header and
forward the internal packet to the destination MEC site.

We also implement a compute-intensive application, in
which the client side sends out requests with parameters and
the server side does the calculation and returns the result. Thus
the CPU usage of the pods can be chosen as the raw compute
status of this application. The station daemon processes the
raw status and normalizes it into the compute metric of MEC
site.

DNS is one of the widely used load balancing techniques
among sites across wide area network. We would like to
compare CFN-dyncast to DNS-based dispatching schemes, in
which the clients need to send DNS request to find a MEC site
if its local cache expires. We implement a real DNS server
based on CoreDNS which provides address records of the
MEC sites. Besides the native DNS, we also implement a
“compute-aware DNS”: the etcd plugin of CoreDNS is
enabled, and CFN Daemon publishes records to etcd based on
the local compute metric. The number of records is inversely
proportional to the compute metric, realizing a DNS server
with dynamic weights related to compute metrics of the MEC
sites.

Fig. 2. Illustration of the testbed

As a summary, there are three dispatching schemes
implemented on our testbed:

 Native DNS: The weights of the records are set
statically based on the capacities of MEC sites. The
weight is set to 2:1:1 on our testbed.

 Compute-aware DNS: The weights of the records are
set dynamically, based on the compute metric.

 CFN-dyncast: All the instances of an application are
hidden behind an anycast IP, the MEC sites’ addresses
are not visible by the clients. The CFN routers are
responsible to dispatch the clients’ demands.

In addition, to visualize the compute metrics of
applications in multiple MEC sites, we persist all the acquired
compute status and the compute metrics into Influx DB. Then
we develop a Dashboard base on Grafana to read data from
the database and provides visualization.

VI. EVALUATION AND ANALYSIS

In the evaluation, we have 71 clients running in parallel:
one of them is selected for observation, and the rest are used
as background workload. Each client will send out a series of
demands.

We use the job completion time (JCT) as the performance
indicator. It is defined as the time duration that the client has
to spend until it gets the response from the server. In CFN-
dyncast, the anycast IP keeps the same, and this address can
be acquired via one time DNS request or even be provisioned
a priori at the client. For DNS-based dispatching schemes, the
client has to send a DNS request to decide the destination
MEC site to which to send the demand, every time the local
DNS cache expires. The DNS cache timeout for native DNS
is set to 60s, and for compute-aware DNS, it is set to 15s.

The testbed runs three times with all the same clients’
demands, but separately dispatched by the three schemes
described above. Each test lasts for more than 20 minutes, and
we obtain more than 8000 data records in each test, i.e., more
than 8000 JCT data points.

As shown in Fig.3, the average JCT for Native DNS
scheme is 175.87ms, for Compute-aware DNS is 179.07ms,
and for CFN-dyncast is 149.54ms. In summary, CFN-dyncast
scheme can shorten the average JCT by about 15%.

More details can be found in TABLE III. With CFN-
dyncast, the span between the upper and lower bound of JCT
is shorten by 34% compared to native DNS and 24%

compared to compute-aware DNS. This result shows that the
CFN-dyncast gains a more concentrated JCT distribution.

TABLE III. PERFROMENCE COMPARISON

 Native DNS
Compute-
aware DNS

CFN-dyncast

Average JCT
(ms)

175.87 179.07 149.54

Span between
the upper and
lower JCT
bound (ms)

110.259 95.449 72.256

No. of
completed job
within 20min

7236 7278 7989

The number of completed jobs within the first 20 minutes
is counted. It can be found out that the number of completed
requests per unit time increased by about 10% when CFN-
dyncast is used.

We analyzed the reason why CFN scheme performs better
than DNS-based schemes. There are two main reasons: a)
CFN just spends time on at most a single DNS request. And
for compute-aware DNS, the client has to initiate DNS request
once its local DNS cache expires, which add extra time to the
JCT. b) The optimal MEC site in a client’s local DNS cache
can be outdated. Before the cache expires, the actual optimal
MEC changes to another one, while the client keep sending
requests to an outdated and suboptimal site, which leads to
longer JCT.

In addition, we observe the curves of compute metric of
the three sites dispatched by CFN-dyncast. As shown in Fig.
4. although the capability of the sites are greatly different, the
compute metrics are converged to almost the same value after
4 minutes, which shows the computing payload of the
application are balanced well among the sites.

VII. CONCLUSION

Integrated design of computing and network in the edge
computing scenarios is emerging. In this paper, we design and
implement CFN-dyncast, a technique that aims to load
balance the MEC sites in consideration of the compute status
in application granularity and the network conditions.
Evaluation result shows that CFN-dyncast is capable to
dynamically maintain the load of different MEC sites at the
same level. Compared to centralized dispatching schemes,
CFN-dyncast helps the clients get replied by the servers in a
shorten period. Limited to the current lab environment, the
difference of network conditions between each two CFN
routers is not remarkable. For next steps, we will try to
evaluate CFN-dyncast on wide area network, in which the
network condition could be more decisive.

Fig. 3. Job completion time under different dispatching schemes

Fig. 4. Compute metric of MEC sites

REFERENCES
[1] “Multi-access Edge Computing (MEC) Framework and Reference

Architecture”, ETSI ISG MEC, 2016.

[2] “Technical White Paper on Carrier Edge Computing Network”, Edge
Computing Consortium and Network 5.0 Industry and Technology
Innovation Alliance, November 2019.

[3] “Technical White Paper on Computing-aware Networking”, China
Mobile and Huawei, November 2019.

[4] L. Geng, P. Liu and P. Willis, “Dynamic-Anycast in Compute First
Networking (CFN-Dyncast) Use Cases and Problem Statement”, IETF
draft, October 2020.

[5] Y. Li, L. Iannone, et al. “Architecture of Dynamic-Anycast in Compute
First Networking”, IETF draft, October 2020.

[6] L. Dunbar, K. Majumdar and H. Wang, “BGP NLRI App Meta Data
for 5G Edge Computing Service”, IETF draft, November 2020.

[7] L. Dunbar and H. Chen, “OSPF extension for 5G Edge Computing
Service”, IETF draft, November 2020.

[8] Król, Michał, et al. "Compute first networking: Distributed computing
meets icn." Proceedings of the 6th ACM Conference on Information-
Centric Networking. 2019.

