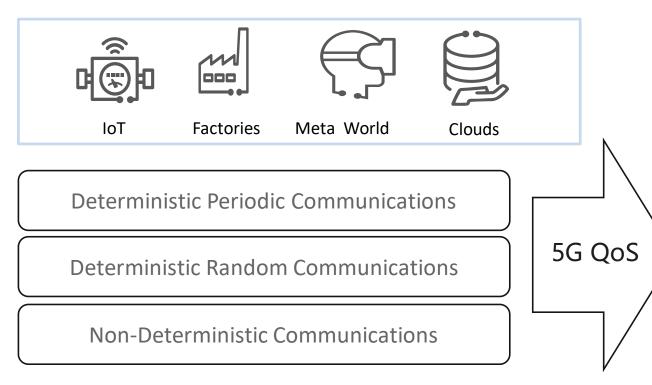
MPLSSD&AINET WORLD22

Orchestrated TSN Network Infrastructure for 5G Industrial Internet

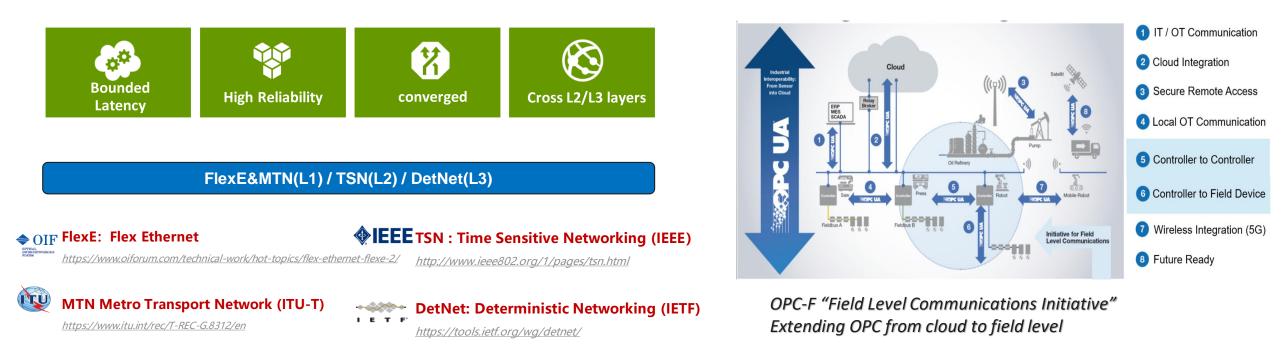
Tongtong Wang Expert Researcher Huawei Technologies


Deterministic Networks for 5G Industrial Internet

5G industrial internet develops fast in recent years. Mixed types of traffic converse over 5G transport networks, enable

5G URLLC(ultra reliable low latency communications) applications, including various vertical applications. E.g. Smart

Manufactory, Smart Grid, Cloud VR, etc.

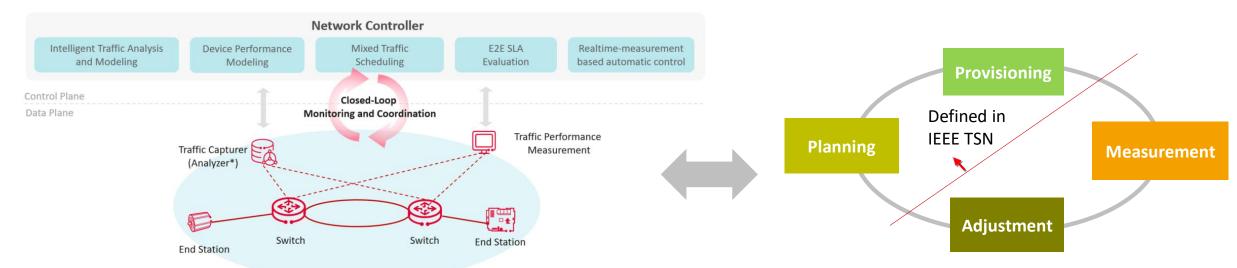

	501 Re:		Default	Packet Delay	Packet Error	Default Maximum Data	Default	
	I		Priority Level		Rate	Burst Volume(NOTE 2)	Averaging Window	Example Services
	1		20	100 ms	10-2	N/A	2000 ms	Conversational Voice
	2		40	150 ms	10-3	N/A	2000 ms	Conversational Video (Live Streaming)
	3	GBR GBR NOTE 1	30	50 ms	10-3	N/A	2000 ms	Real Time Gaming, V2X messages Electricity distribution – medium voltage, Process automation - monitoring
	4		Bandwidth Sensitive				2000 ms	Non-Conversational Video (Buffered Streaming)
	65		Services					Mission Critical user plane Push To Talk voice (e.g., MCPTT)
	66		20	100 ms	10-2	N/A		Non-Mission-Critical user plane Push To Talk voice
	67		15	100 ms	10-3	N/A		Mission Critical Video user plane
	75	1	25	50 ms	10-2	N/A		V2X messages
	5		10	100 ms	10-6	N/A		IMS Signalling
	6		60	300 ms	10-6	N/A	N/A	Video (Buffered Streaming)TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)
	7		70	100 ms	10-3	N/A	N/A	Voice, Video (Live Streaming) Interactive Gaming
	8 9 NOTE 1		Connection N/A				N/A	Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p
						,		file sharing, progressivevideo, etc.)
	69	NULLI	5	60 ms	10-6	N/A	N/A	Mission Critical delay sensitive signalling (e.g., MC-PTT signalling)
	70		55	200 ms	10-6	N/A	N/A	Mission Critical Data (e.g. example services are the same as QCI 6/8/9)
	79		65	50 ms	10-2	N/A	N/A	V2X messages
	80		68	10 ms	10-6	N/A	N/A	low Latency eMBB applications Augmented Reality
1	81		11	5 ms	10-5	160 B	2000 ms	Remote control (see TS 22.261 [2])
	82	Delay	ŮRL	10 msNOTE	tency	Sensitive	² 000 ms	Intelligent transport systems
	83	Critical	Services				000 ms	Intelligent Transport Systems
	84	GBR	19	10 ms	10-4	255 B	2000 ms	Discrete Automation
	85		22	10 ms	10-4	1358 B NOTE 3	2000 ms	Discrete Automation

3GPP SA2 Table 5.7.4-1: Standardized 5QI to QoS characteristics mapping

TSN and Deterministic Network Standards

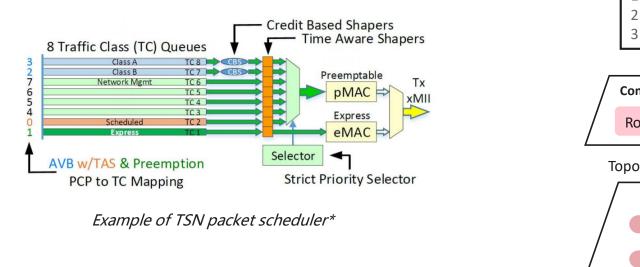
The goal of these standards is to support the creation of multi-vendor networks, any ONE of which can provide BOTH:

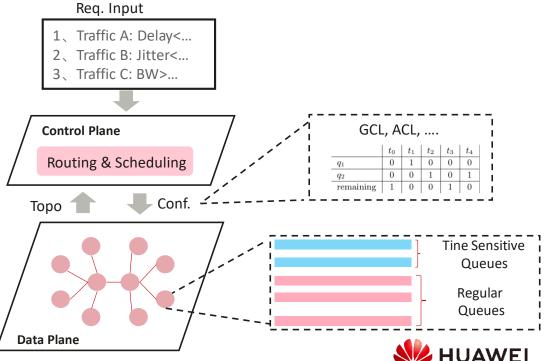
- Hard real-time services for applications demanding ultra-low packet loss and guaranteed on-time delivery.
- Normal enterprise best-effort traffic services.


Huawei is investing in these standards in the belief that they will help to expand the growth of the Industrial Internet.

Huawei TSN Technologies and Solution

- Differentiated Performance KPIs Provides multiple levels of Latency and Jitter guarantees
- Application driven networks interpret user/application intent to network provisioning
- Reliability and Robustness Self adaptive to solve non-prefect real world issues (clocking shift, interference traffics)
- Evolution Gradually update existing QoS switch/routers with TSN Switch/Routers with TSN/Non-TSN mixture solution


Closed-loop monitoring and coordination for critical applications (time sensitive, highly reliable services)



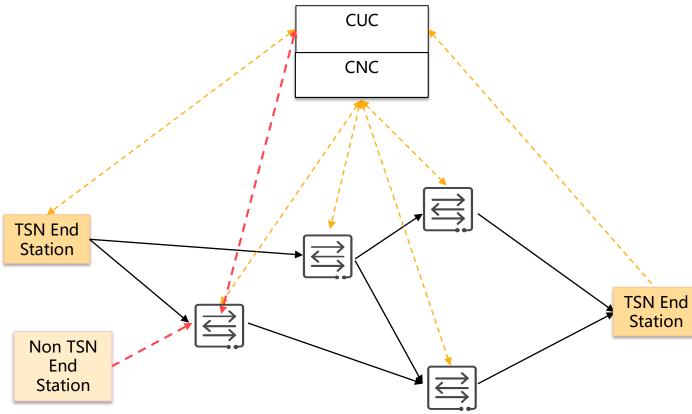
Differentiated SLA levels: Smart TSN Network Planning

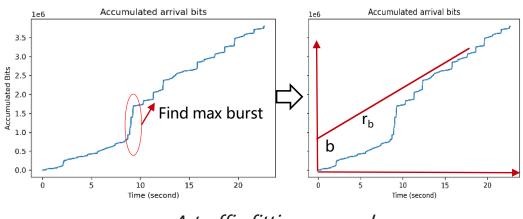
- TSN packet schedulers suggested in IEEE TSN profiles use combination of time aware shapers and asynchronous traffic shapers defined in 802.1 TSN standards.
- Based on Network Calculus and TAS planning theories, smart TSN planning algorithms can allocate adequate resource(bandwidth, buffer) along flow path, to differentiated levels of bounded latency, bounded jitter in a converged network.

*https://www.ieee802.org/1/files/public/docs2021/dg-pannell-ChoosingTheRightTSNToolsToMeetABoundedLatency-whitePaper-0821-v01.pdf

Application Driven TSN Provisioning

Decoupled application and network


- User designs in engineering tool by HMI environments;
- Application network coordination via Middleware and automatic resource computation and provisioning in TSN controller;
- TSN middleware support legacy Industrial Ethernet, interpret traffic specification and communication cycle parameters, thus enable Legacy IEC 61158 protocols over TSN



MPLSSD&AINET

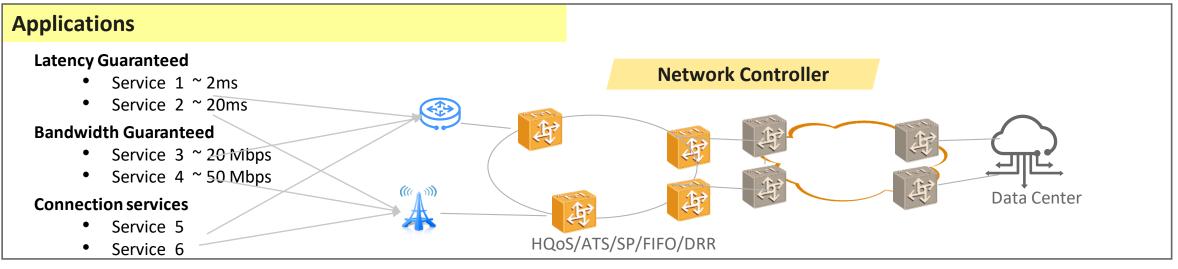
Robust Self-adaptive TSN

TSN bridges could learn traffic features via netflow functions, either to protect misbehavior flows from TSN end stations, or self–adaptive to legacy non-TSN industrial devices and help setup TSN data path between legacy devices and TSN end stations as a proxy.

A traffic fitting example

By netflow (RFC 3954) similar approach, Huawei TSN bridge could collect statistics for Layer 2 field, like MAC addresses, VLAN IDs and record packet and byte counts, timestamps, Type of Service etc. to check and learn traffic specifications from legacy end devices.

MPLS**SD**&AÎNET

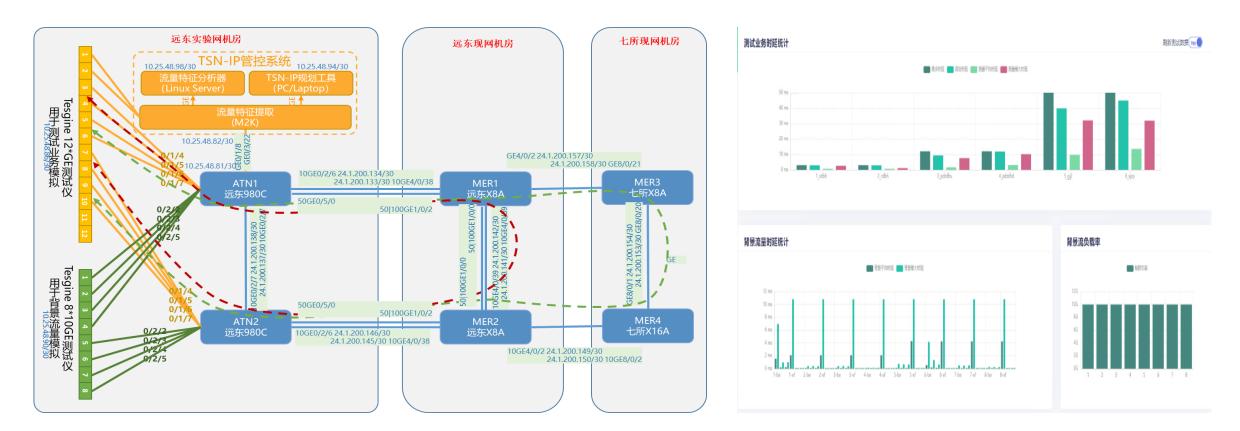


Evolve Smoothly - Mixed TSN Shaper Coordination

Gradually update network with TSN capable devices and make most advantages out of existing QoS/A-synchronized Profiles

Profile	Shapers	Advantages	implementations
Synchronized	TAS/CQF	Low latency / Jitter control	New TAS Devices + gPTP
A-synchronized	ATS/TBS/Priority	Bounded latency	Existing QoS Devices
New TSN	mCQF	Bounded latency / Jitter control	N/A

Challenge is for network controlling tools to support QoS/TSN resource calculation and provisioning.



Huawei OPC UA over TSN testbed

Huawei "TSN-IP" demo project

- "TSN-IP is a joint demo project between China Unicom and Huawei, using SRv6 over TSN queueing and forwarding.
- This demonstration shows that multiple time critical communications can be served in one converged transport network, while maximum delay is always lower than required and planned delay, ensuring E2E boundedness of service latency even when background traffic congestion and instantaneous traffic burst happens.

MPLS**SD**&**AI**NET WORLD22

Standard Contributions

Area	Торіс	Standard/Drafts	Area	Standard Draft
	RFC 8655	Deterministic Networking Architecture		IEEE Std 802.1Qav/Qbv/Qci/Qch TSN shapers
	RFC 8939	Deterministic Networking (DetNet) Data Plane: IP		IEEE Std 802.1AS-2020 Clock synchronization
	RFC 9023	Deterministic Networking (DetNet) Data Plane: IP over IEEE 802.1 Time-Sensitive Networking (TSN)		IEEE Std 802.1CB Frame replication and elimination for reliability
	DetNet bounded latency	draft-ietf-detnet-bounded-latency		
	Controller Plane	draft-ietf-detnet-controller-plane-framework		IEEE Std 802.1CS Link-local Registration Protocol
				P802.1DC Quality of Service Provision by Network Systems
	Ring Protection	draft-jiang-detnet-ring		
IETF DetNet	Detnet YANG Model	draft-ietf-detnet-yang	IEEE 802.1 TSN	P802.1ASdm/ASdr Clock sync hot standby
	Redundancy Protection	draft-geng-spring-sr-redundancy-protection		P802.1DF TSN for Service Provider Networks
	Redundancy Policy	draft-geng-spring-redundancy-policy		
	DetNet SRv6 Data Plane	draft-geng-detnet-dp-sol-srv6		IEEE/IEC 60802 TSN for Industrial Automation
	Encapsulation	diant geng detnet up sol sivo		P802.1 Qdj Configuration Enhancements for Time-Sensitive
	SRv6 for DetNet	draft-geng-spring-srv6-for-detnet		Networking
	IPv6 Extension Header for DetNet	draft-pthubert-detnet-ipv6-hbh		P802.1 Qcw YANG Data Models for Scheduled Traffic, Frame Preemption, and Per-Stream Filtering and Policing

Thank you

