IPv6+: A New Era of IP Networks for 5G and Cloud

Zhenbin Li

Huawei Chief IP Standard Representative IETF Internet Architecture Board Member

HUAWEI TECHNOLOGIES CO., LTD.

Zhenbin (Robin) Li

IETF Internet Architecture Board (IAB) Member https://www.iab.org/about/iab-members/

- 15+ years research and development work in IP Operating System and SDN Controller as the system architect.
- Be active in standard activities since IETF75 and propose 100+ drafts/RFCs in RTG/OPS areas (<u>www.ipv6plus.net/ZhenbinLi</u>).
- Promote SDN Transition (Netconf/YANG, BGP/PCEP, etc.) innovation and standard work in the past 6 years.
- Focus on the innovation standard work of SRv6, 5G Transport, Telemetry, Network Intelligence, etc. since 2016.
- Be elected as the IETF IAB member to be responsible for Internet architecture work from 2019 to 2021.

Rethinking on Internet

- Lesson of IPv4: Scalability
- Lesson of IPv6: Compatibility
 - SRv6 is compatible with IPv6 forwarding.
 - SRv6 is compatible with MPLS forwarding.
- Success of All IP 1.0
 - MPLS plays an important role.
 - SRv6 must inherit 3 advantages of MPLS firstly: VPN; FRR; TE.

• Challenges of All IP 1.0

- **1**. Isolation of Network Domains owing to Islands of IP Transport Network.
- 2. Limited space of encapsulation of IPv4 and MPLS for programmability for new services.
 - IPv4: IPv4 Options are not implemented.
 - MPLS: Fixed length and fixed fields.
- **3**. Networking on its own owing to decoupling application and network transport.
 - ATM to Desktop: Failed.
 - MPLS to Cloud: Failed

IPv6+: A New Era of IP Networks for 5G and Could

- Rethinking on IPv6: Address Space is not enough.
- Mission of IPv6+:
 - Integrate different network easier based on affinity to IP reachability.
 - Provide more encapsulations for new network services such as Network Slicing, DetNet, etc.
 - Cross the chasm between application and network based on affinity to IP and Network Programming conveying application information through IPv6 Extension Header into network.
 - Promote IPv6 combining with requirements on more address spaces.

IPv6 Extension Headers and SRv6: Release Network Programming Capabilities

IPv6+ Research and Standard Planning

IPv6+ 1.0: SRv6 Basic Capabilities

- SRv6 VPN
- SRv6 TE
- SRv6 FRR

IPv6+ 2.0 : New Network Services for 5G/Cloud

- Network Slicing/VPN+
 OAM
 SFC
- In-situ Telemetry/IFIT
 Path Segment
- BIERv6
 Detnet
 SRv6 Compression/G-SRv6

SD-WAN

IPv6+ 3.0: APN6 – App-aware network architecture

- Forwarding Plane: Conveying Application information via IPv6 extension header
- Control Plane: Exchange Application information through control protocols

IPv6+ Standardization Work Layout

5G Transport Network Slicing

Transport Network Slicing Requirements

VPN+ Network Slicing Architecture

https://tools.ietf.org/html/draft-ietf-teas-enhanced-vpn

SRv6 Extensions for VPN+

Leverage SRv6 programmability for Network Slicing

• Network slice identification

A1:1::1

A5:2::1

- Dedicated SRv6 Locators for different network slices
- Function & Argument can be slice-specific
- SRv6 SIDs inherit the slice identification from Locator
- SRv6 enhancement for network resource awareness

A2:1::1

A2:2::1

23

A2:2::C1

A6:1::C1

22

A6:1::1

A6:2::1

A2:1::C1

A6:2::C1

Different SRv6 SIDs identifies network resource allocated on each segment for different network slices

A2:1::C2

A2:2::C2

A6:1::C2

A6:2::C2

tools.ietf.org/html/draft-dong-spring-sr-for-enhanced-vpn

IPv6 Extensions for VPN+

Г	Version	Traffic Class	Flow Label		Label		
	Payload Length		Next Header		Hop Limit		
	Source Address(A1::1)						
L	Destination Address(A2::11)						
HBH Header-	Next Header	Hdr Ext Len	VTN-ID				
Г	Next Header	Hdr Ext Len	Routing Type = 4		Segments Left=2		
	Last Entry	Flags	Тад				
Routing Header		Segment [0] = A6::1					
(SRH)	Segment [1] = A4::13						
	Segment [2] = A2::11						
L	Payload						

VTN-ID=2

Payload

- Two data plane identifiers for network slice specific packet forwarding
 - IPv6 DA/SRv6 SID is used to determine the next-hop/outgoing interface ٠ within the network slice topology/path
 - VTN-ID is used to determine the sub-interface/forwarding resource ٠ allocated on the outgoing interface for a network slice
- Advantage of IPv6 VPN+ ٠
 - Decoupled identifiers for topology and resource specific processing ٠
 - Reduce the amount of forwarding table entries ٠

Forwarding Tables on Node B

VTN-ID=1 Payload	Prefix	Next-hop	OutIf			
GE 0/1/0	A6::1	С	GE0/1/0	MainIf	VTN-ID	SubIf
B HexE1: VIN1 C	A6::2	G	GE0/2/0	GE0/1/0	1	FlexE1
FlexE2: VTN2				GE0/1/0	2	FlexE2
				GE0/1/0	3	F1exE3
				GE0/2/0	1	FlexE1
5-27 U				GE0/2/0	2	FlexE2
				GE0/2/0	3	FlexE3
				Hu	awei Technologieg	Coltd 12

nuawer recrimologies co., Llu

APN6

SRv6/IPv6 IFIT (In-situ Flow Information Telemetry)

IPv6 IFIT/IOAM: draft-li-6man-ipv6-sfc-ifit-00 IETF104@Prague

VPN+ BIERv6 APN6

SRV6 IFIT for Silent Failure: Enable Real-time SLA Awareness/Proactive O&M

Silent Fault Solution Key Technology Requirement: Per-packet based in band real time monitoring

Industry iOAM mechanism:

IFIT (In-situ Flow Information Telemetry) = NCE + SRv6 Programming + Telemetry

IFIT with IPv6 Alternate Marking

Alternate Marking Method (RFC8321)

IPv6 Encap: draft-ietf-6man-ipv6-alt-mark

- HbH: for per hop monitoring
- DoH: for end to end monitoring
- DoH+RH: for specified nodes monitoring

IFIT deployment automation and interactive telemetry framework

- IFIT capability advertisement and IFIT based path computation
- SR-Policy enabled IFIT
- APN enabled IFIT
- FlowSpec enable IFIT policy

SR Multicast

- Multicast Use cases (draft-ietf-bier-use-cases-09)
 - Broadcast Video Services (eMBMS/4K)
 - IPTV and OTT Services
 - **BUM in EVPN**
 - Data Center Virtualization/Overlay
- Basic requirements of Multicast in SR networks
 - **Control-plane simplification**

BIERv6: IPv6 with BIER

- draft-mcbride-bier-ipv6-requirements-00
- draft-xie-bier-ipv6-encapsulation-00
- draft-xie-bier-ipv6-mvpn-00

- 2. How should it be processed:
 - Replicate a packet to multiple interfaces according to the BIER BitString (0110).
 - IPv6 SA (A::1) identify MVPN service, the same concept as IPv6 DA used for unicast.

App-aware IPv6 Networking (APN6) Framework

- Make use of IPv6 extensions header to convey the service requirements along with the packet to the network
- To facilitate the service deployment and network resource adjustment to guarantee SLA for applications

Three Elements of APN6

- Finer-granularity
 - per packet vs. per flow, per node vs. E2E, individual vs. statistics, etc.
- Comprehensive measurements
 - per packet with per flow, per node with E2E, individual with statistics, in-band with out-band, passive with active, etc.

APN6 value obtained wide industry consensus

APN6 Side Meeting @ IETF105

- Thursday Morning @Notre Dame
- Attendee: 50+

Agenda

- **1.** Admin (Chairs) [5 : 5/75]
- 2. Problem Statement and Requirements (Zhenbin Li) [10 : 15/75]
- 3. Application-aware Information Conveying
 - a) Framework of App-aware IPv6 Networking (Shuping Peng) [10 : 25/75]
 - b) Firewall and Service Tickets (Tom Herbert) [10 : 35/75]
 - c) SRH Metadata for Simplified Firewall (Jim <u>Guichard</u>) [5 : 40/75]

4. App-aware Services

- a) IPv6-based DetNet (<u>Yongqing</u> Zhu) [5 : 45/75]
- b) SRv6 Path Segment (Fengwei Qin) [5 : 50/75]
- c) IPv6-based IFIT (In-situ Flow Information Telemetry) (<u>Haoyu</u> Song) [5 : 55/75]
- 5. Shaping Our Discussion (Chairs and Room) [15:70/75]
- 6. Wrap Up (Chairs) [5 : 75/75]

Next Step:

- Setup Mailing list to continue discussions
- https://github.com/shupingpeng/IETF105-Side-Meeting-APN6

Area	Торіс	Draft	Vendors	Operators & Verticals		
	Problem statement and use cases	draft-li-apn6-problem-statement-usecases				
APNO	Application-aware IPv6 Networking	draft-li-apn6-app-aware-ipv6-network	HUAWEI	Bell Y FIELCOM 中国移动 China Mobile China Mobile China Mobile China Mobile China Mobile		

Summary of IPv6+ Extensions

Fasture	Use of IPv6 Extension Headers					
Feature	HBH Header Routing Header		DO Header			
SRv6 TE/FRR/VPN		\checkmark				
VPN+	\checkmark	(√)				
IFIT	\checkmark	\checkmark	\checkmark			
BIER			\checkmark			
APN6	\checkmark	\checkmark	\checkmark			

SRv6 Books and Latest Industry Activities

Premium expertise

- IETF Internet Architecture Board (IAB) Member
- Datacom chief architect
- Datacom IP research experts

Share experience

- Network planning and design
- Deployment, turning& optimization
- Network OAM and analysis

ETSI IPv6+ Webinar

ETSI IPv6 Whitepaper is published to promote IPv6+

https://www.etsi.org/newsroom/news/1814-2020-08-etsi-ipv6-whitepaper-outlines-best-practices-challenges-benefits-and-the-wayforward

IPv6+ Website

https://www.ipv6plus.net/

THANK YOU