MPLSSD&AINET WORLD22

IPv6 Enhanced and Application-aware Networking (APN)

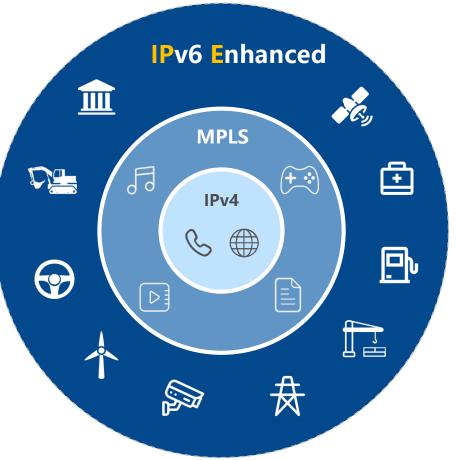
Zhenbin Li

Chief IP Protocol Expert and Standard Representative

Huawei Technologies

Zhenbin (Robin) Li

Huawei Chief IP Protocol Expert IETF Internet Architecture Board (IAB) Member <u>https://www.iab.org/about/iab-members/</u>


- 15+ years research and development work in IP Operating System and SDN Controller as the system architect.
- Be active in standard activities since IETF75 and propose 100+ drafts/RFCs in RTG/OPS areas (www.ipv6plus.net/ZhenbinLi).
- Promoted SDN Transition (Netconf/YANG, BGP/PCEP, etc.) innovation and standard work in the past years.
- Focus on the innovation standard work of SRv6, 5G Transport, Telemetry, Network Intelligence, etc. since 2016.
- Publish the book "SRv6 Network Programming: Ushering in a New Era of IP Networks"
- Be elected as the IETF IAB member to be responsible for Internet architecture work from 2019 to 2020.
- Be elected again as the IETF IAB member to be responsible for Internet architecture work from 2021 to 2022.

Agenda

- IPv6 Enhanced
- APN: Application-aware Networking
- CAN: Computing-aware Networking
- Summary

IP Evolutions: Applications Drives the Change of IP Network Architectures

Speed 1000000 800000 600000 400000 IP 100000 200000 2.4 64 2000 0 1G 2G 3G 5G 4G Optical

2G 🖥

1990

64 Kb/s

ズ

1G

1980s

2.4 Kb/s

R

1200000

Source: ETSI IPv6 Enhanced Innovation (IPE) - Gap Analysis, August 2021

4G 🕅

2009

100 Kb/s

5G 🚠

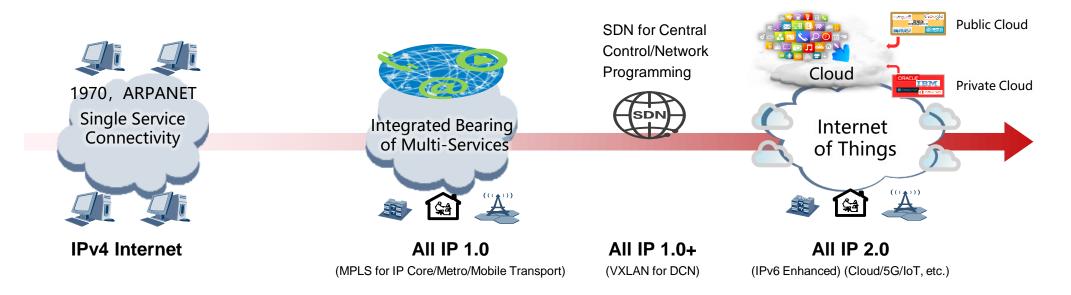
2020

More than

1 Gb/s

1000000

3G 🛋


2003

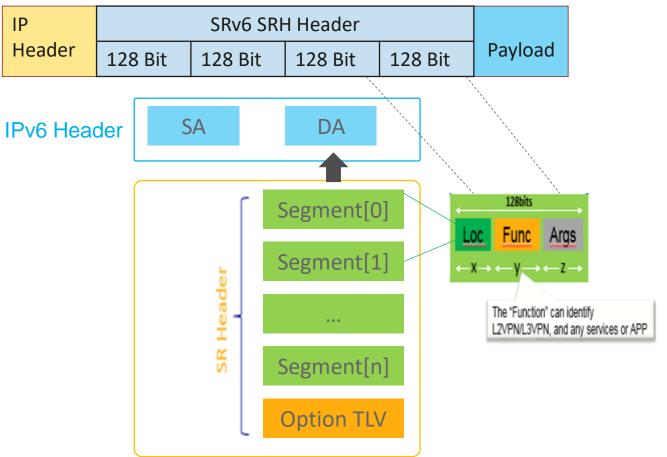
2 Kb/s

Wireless

5 Huawei Confidential

IPv6 Enhanced: A New Era of IP Networks for 5G and Could

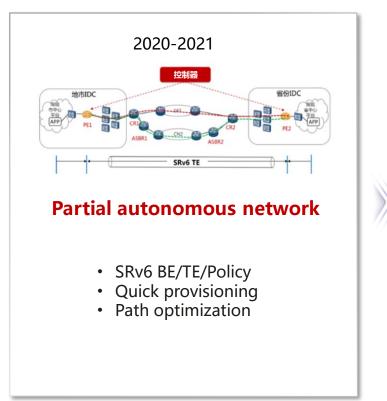
- Rethinking on IPv6: Address Space is not enough.
- New Chance of IPv6: 5G changes the attributes of connections, and cloud changes their scope.
- Mission of IPv6 Enhanced:
 - Integrate different network easier based on affinity to IP reachability.
 - Provide more encapsulations for new network services such as Network Slicing, DetNet, etc.
 - Cross the chasm between application and network based on affinity to IP and Network Programming conveying application information through IPv6 Extension Header into network.
 - Promote IPv6 combining with requirements on more address spaces.

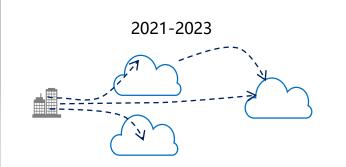


IPv6 Extension Headers and SRv6: Release Network Programming Capabilities

IPv6 Extension Headers

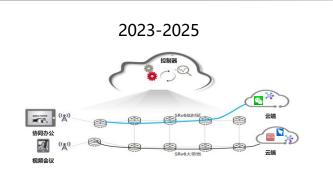
					_				
Version	Traffic Class	F	Flow Label						
Ploa	d Length	Next	=43	Hop Limit		He			
Source Address									
Destination Address									
Hop-by-Hop Options Header									
Destination Options Header									
Routing Header/SRH									
Destination Options Header									
	Pay	oad							


SRH: Three Layers of Programming Spaces



IPv6 Enhanced: Phased Development, Continuously Improving Network Quality

IPv6 Enhanced 1.0 Network programming


IPv6 Enhanced 2.0 Experience assurance

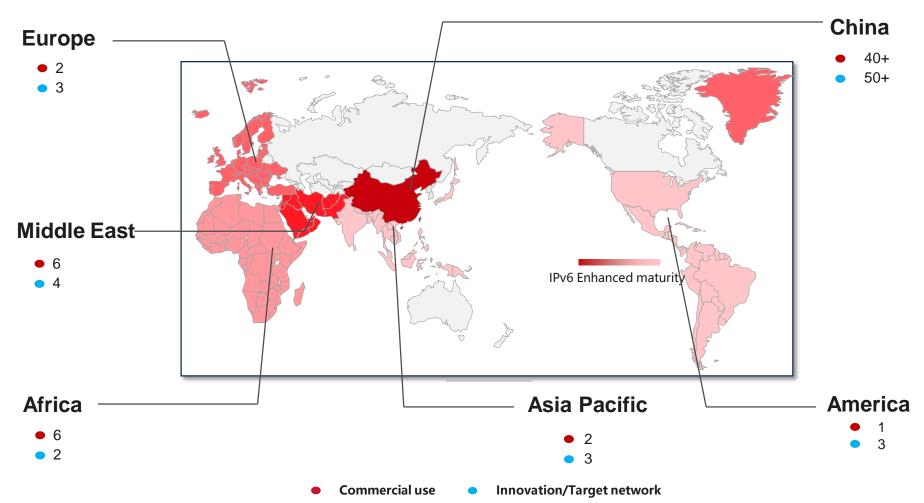
Conditional autonomous network

- Numerous network slices
- In-band flow measurement
- New-type multicast
- Visualized and optimal experience

IPv6 Enhanced 3.0 APN

Highly autonomous network

- Application-based awareness
- Policy mobility, consistent experience, security anywhere
- Per-flow SLA assurance


IPv6 Enhanced Standardization Work Layout

Please visit <u>www.ipv6plus.net</u> for the latest progress

IPv6 Enhanced: Fast World-Wide Development

IPv6 Enhanced Deployment: 140+ SRv6; 30+ IP Network Slicing

Agenda

- IPv6 Enhanced Innovations
- APN: Application-aware Networking
- CAN: Computing-aware Networking
- Summary

Background 1: Challenges of Operators' IP Network Services

Bottlenecks in Carriers' Transport Networks 1. Pipelining 2. Marginal Utility Diminishing Great BW requirement increase but very limited Repeated network function developments revenue from the network service MPLS: VPN/TE/FRR Network does not know about the accurate service SR-MPLS: VPN/TE/FRR requirement from applications, so SLA is actually SRv6: VPN/TE/FRR guaranteed by low bandwidth utilization. 3. Constrained Network 4. Encryption Capabilities Encryption makes it more difficult to provide ٠ fine-granularity network services Network capabilities are improved greatly OUIC invalidates network middle box DiffServ/ HQoS/SR Policy/Slicing/ ISOC advocates end-to-end encryption ٠ Telemetry/SFC/... to protect security and · Significantly improved scalability privacy: "Encryption is vital to a safe, Lack of flexible fine-grained mapping between secure and functioning world." applications and network services

More and more new applications are ever-emerging.

Network needs to cooperate with applications to provide fine-granularity network services while guarantee security.

DOCSIS

DSL

Twisted Pair

amazon

skype"

facebook

snapchat 🤜 💽 WhatsApp 😕

UDP

Ethernet

Fiber

NETFLIX

HTTP SMTP NTP DHCP DNS SIP

TCP

WiFi

Coaxial

Google

TAGGED

You Tube

twitter

LTE

Radio

3G

12 Huawei Confidential

Background 2: Challenges of Traditional Fine-grained Service Provisioning

Trad	litional methods	 Challenges Indirect application info which is in need of transition Forwarding performance issues Scalability issues from the limitation of dedicated hardware resource 				
5 Tuples	Using { <i>srcIP</i> , <i>dstIP</i> , <i>srcPort</i> , <i>dstPort</i> , <i>protocol</i> } <i>and</i> ACL/PBR to identify a flow	Forwarding performance issues				
DPI	Deep Packet Inspection to identify application	 Challenges from privacy issues Challenges from network security Forwarding performance issues 				
Orchestrator and SDN	Applications ask orchestrator to interwork with network SDN controller	Complex interactionToo many interfaces to be standardized				

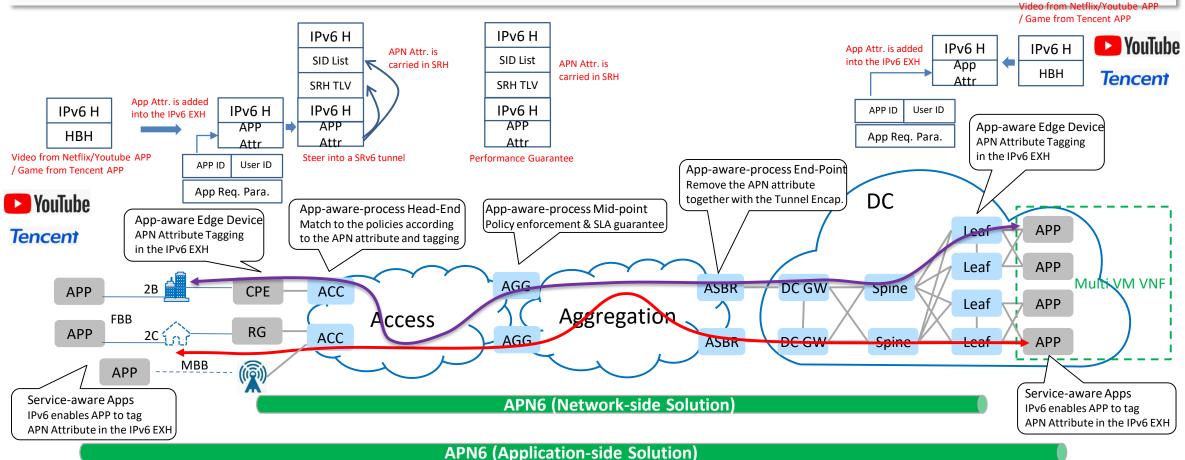
TO BE: Convergence of application and network to provide fine-grained services

- Use Identifiers for mapping of applications' requirements and parameters to network service functions, to further release network capabilities
- The application-aware ID and parameters need to solve the challenges in existing methods and reduce CAPEX and OPEX
- IPv6 can act as an important medium in application and network convergence

Three Elements of APN

- 1. Open Application info carrying
- APP-ID
 - App ID
 - User ID
- APP Parameter Info
 - Bandwidth
 - Latency
 - Loss rate

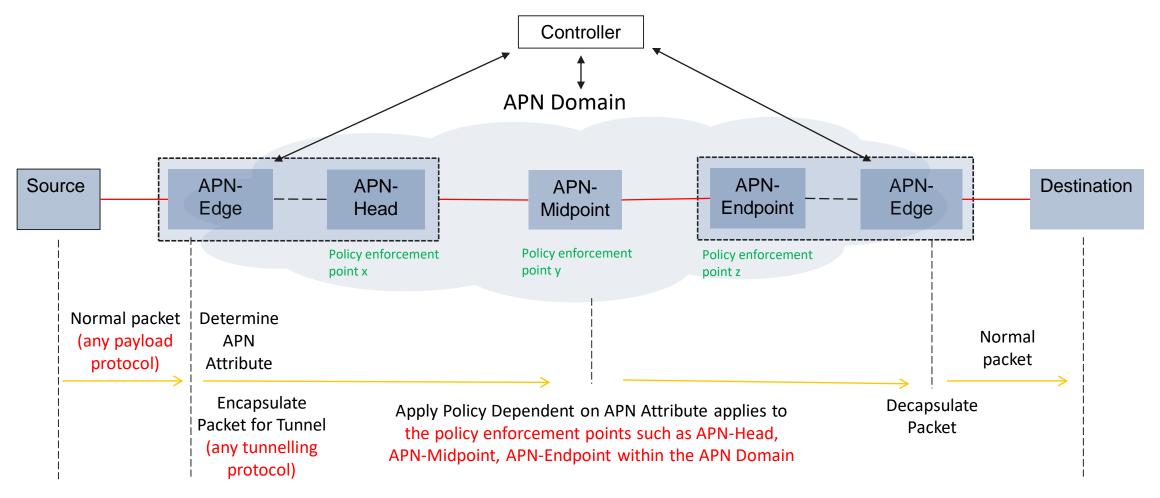
2. Rich network services


- DiffServ
- H-QoS
- SR Policy
- Network Slicing
- DetNet
- SFC
- Stateless Multicast/BIERv6

- 3. Accurate Network Measurement
- Finer-granularity
 - D per packet vs. per flow, per node vs. E2E, individual vs. statistics, etc.
- Comprehensive measurements
 - per packet with per flow, per node with E2E, individual with statistics, in-band with out-band, passive with active, etc.

APN6: Application-aware IPv6 Networking

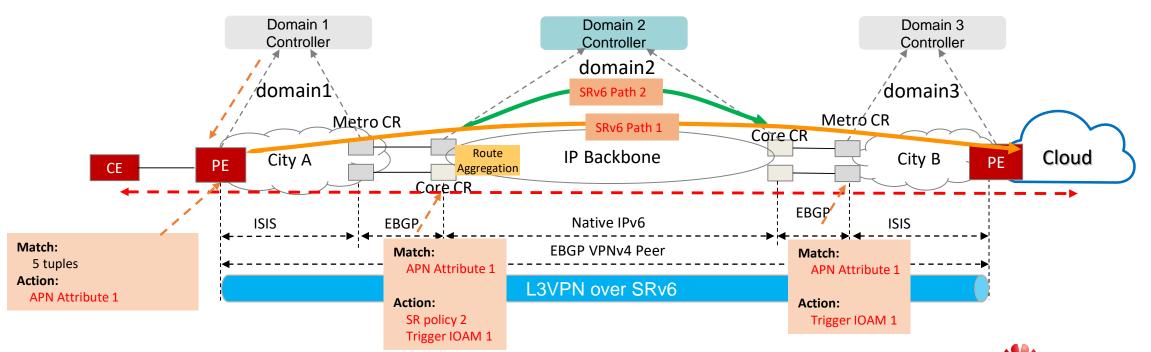
- Make use of IPv6 extensions header to convey APN attribute along with the packets into the network
- To facilitate the flexible policy enforcement and fine-grained service provisioning



https://datatracker.ietf.org/doc/draft-li-apn-framework/

https://ieeexplore.ieee.org/abstract/document/9162934

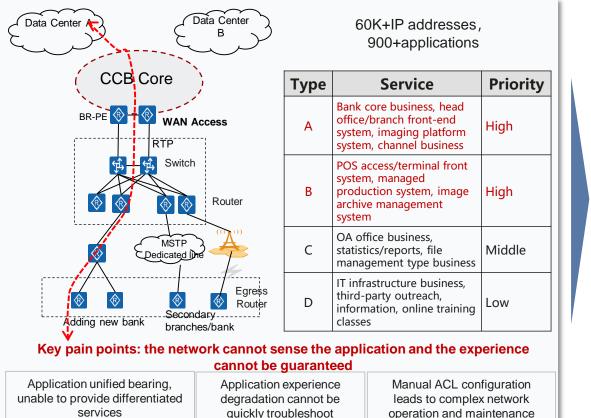
Reference Diagram of APN Network-side Solution



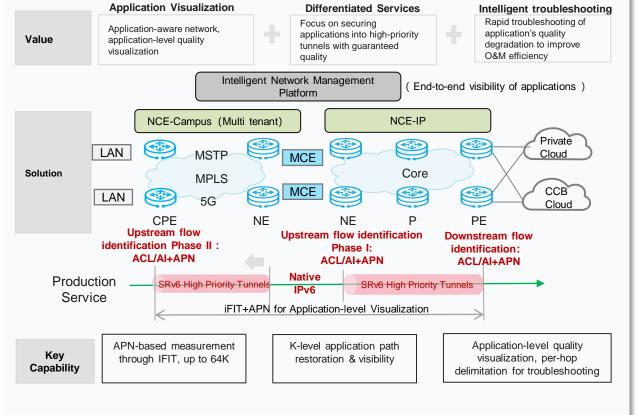
An APN Domain may span multiple network domains controlled by the same operator

Traffic Steering in the IP Backbone with APN

- APN attribute is encapsulated at the ingress node.
- With the APN attribute, the fine-granular traffic steering in the IP backbone can be easily facilitated.
 - To match some field(s) of the APN attribute, a path with low-latency can be selected and steered into.
- Other policy actions (such as IOAM) can also be triggered according to the APN attribute carried in the header.



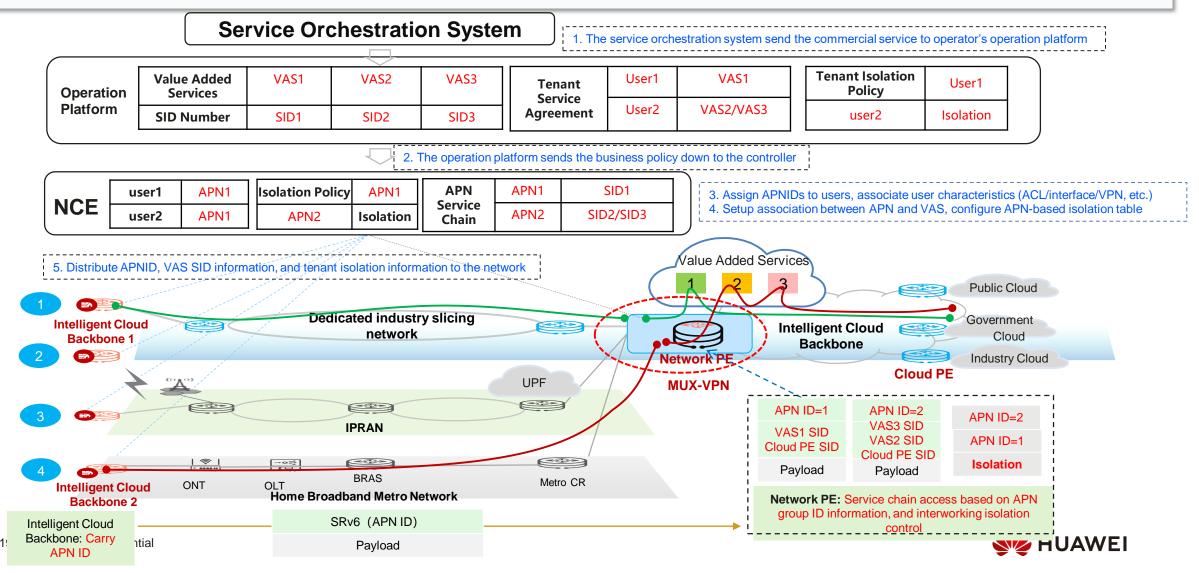
HUAWEI


Finance: App-level Quality Visibility and Assurance, Building Differentiated Service Capabilities through APN6+iFIT

Industry requirements: In finance, government (smart city) and other scenarios, application-level experience quality assurance is a key requirement Solution : Identify applications on the access device and tag APN6 ID, and steer traffic of key applications/important video conferencing to SRv6 tunnel; combine iFIT and APN6 to realize application-level quality visibility, quality difference delimitation and intelligent self-healing to improve service

AS IS: Lack of Application-Oriented Differentiated Service Capability

TO BE: Network differentiation bearing services, applicationlevel quality visibility, user experience guaranteed

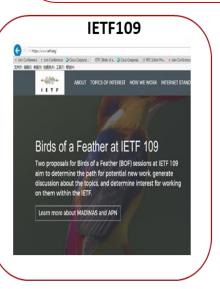


Service Provider: APN6-based Mux-VPN Solution to Achieve Cloud&Network&Security Integration

Service changes: As business goes to the cloud, more and more valueadded services will be centrally deployed and flexibly customized by users; security business is the key demand of enterprises, and the isolation demand between tenants is very popular **Key challenges:** The current use of ACL to do business access control and tenant isolation control through ACL, consuming a large number of ACL, high hardware costs, poor business scalability, and costly post-maintenance

Solution : The service function chain is processed based on APN6, and the APNID is used to identify the tenants; the isolation control between users is done based on APNID, which can greatly simplify the configuration and reduce the ACL resource requirements.

More Industry Consensus on APN and Approved IETF APN BOF


- Side Meetings @IETF105 & IETF108
- Hackathons @IETF108 & IETF109 & IETF110
- **Demos** @INFOCOM2020 & 2021
- APN Mailing List Discussions apn@ietf.org
- APN Interim Meeting @IETF 110-111
- APN BoF @IETF111, Approved! 30 July 2021, 1200-1400 PDT

https://github.com/APN-Community

	IETF111 APN BoF	
Friday, July 30, 2021		
11:00-18:00 Gather	Secretariat "Registration" Desk	C 🖇 🛱
12:00-18:00 Gather	IANA Office Hours	C 🖇 🛱
12:00-18:00 Gather	RFC Editor Office Hours	C 🖇 🛱
12:00-14:00 Friday Session I		
Room 1 art webt	ans WebTransport	© \$ ∎∩∰
Room 2 int add	Adaptive DNS Discovery	ଡ ହ ∎ ∩ 🖱
Room 3 irtf gaia	Global Access to the Internet for All	ଡ ହ ∎ ∩ 🖱
Room 4 ops mbo	ed MBONE Deployment	© ♀ ∎∩ 🖱
Room 5 rtg apn	Application-aware Networking	BOF 🛛 🖓 🖿 🖓 🗂
Room 6 sec suit	Software Updates for Internet of Things	ଡ ହ ∎ ∩ 🖱

https://www.ietf.org/blog/ietf109-bofs/ https://www.ietf.org/blog/ietf110-bofs/ https://trac.tools.ietf.org/bof/trac/wiki/WikiStart (IETF111 BoF)

APN Papers for the Academia World

APN6: Application-aware IPv6 Networking

Shuping Peng, Jianwei Mao, Ruizhao Hu, Zhenbin Li Datacom Research Department Huawei Technologies, Beijing, China pengshuping@huawei.com

Abstract-This Demo showcased the Application-aware IPv6 Networking (APN6) framework, which takes advantage of the programmable space in the IPv6/SRv6 (Segment Routing on the IPv6 data plane) encapsulations to convey application characteristics information into the network and make the network aware of applications in order to guarantee their Service Level Agreement (SLA). APN6 is able to resolve the drawbacks and challenges of the traditional application awareness mechanisms in the network. By utilizing the real-time network performance monitoring and measurement enabled by Intelligent Flow Information Telemetry (iFIT) and further enhancing it to make it application-aware, we showed that the VIP application's flow can be automatically adjusted away from the path with degrading performance to the one that has good quality. Furthermore, the flexible application-aware SFC stitching application-aware Value Added Service (VAS) together with the network nodes/routers is also demonstrated.

Keywords-IPv6, iFIT, Segment Routing, SRv6, SFC

I INTRODUCTION

The network operators have been facing the challenges of providing better services to their customers. Nowadays it becomes even more challenging. As 5G and industry verticals evolve, the ever-emerging new services with diverse but demanding requirements such as low latency & high reliability are accessing to the network. Applications such as on-line gaming, live video streaming, and video conferencing have highly demanding requirements on the network performance. Meanwhile, they are the actual revenueproducing applications. The customers of network operators desire to have differentiated SLA guarantee for their various demanding new services. However, the current network operators are still not aware of which applications the traffic traversing their network actually belong to. Therefore, the network infrastructure of the network operators gradually becomes large but dumb pipes. Accordingly the network operators are losing their opportunities of making revenue increase in the 5G era and beyond.

There are already some traditional ways to make the network aware of the applications it carries. However, they all have some drawbacks; 1) Five Tuples are widely used for the traffic matching with Access Control List (ACL)/Policy Based Routing (PBR), but still not enough information for supporting the fine-grained service process, and can only provide indirect application information which needs to be further translated in order to indicate a specific application; 2) Deep Packet Inspection (DPI) can be used to extract more application-specific information by deeply inspecting the packets, but more CAPEX and OPEX will be introduced as well as security challenges; 3) Orchestration and SDN-based Solution is used in the era of SDN, with the SDN controller being aware of the service requirements of the applications on the network through the interface with the orchestrator and the service requirement used by the controller for traffic

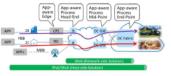
21

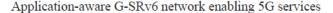
management over the network, but the whole loop is long and time-consuming which is not suitable for fast service provisioning for critical applications.

We proposed Application-aware IPv6 Networking (APN6) framework[1][2][3], which is able to resolve the drawbacks and challenges of the above-mentioned traditional application awareness mechanisms. In this Demo, we demonstrated a showcase that includes all the key components in the APN6 framework and their capabilities. According to the application characteristics information carried in the IPv6/SRv6 packets. the application flows are steered into corresponding SRv6 TE tunnels. Utilizing the real-time network performance monitoring and measurement enabled by Intelligent Flow Information Telemetry (iFIT) [4] and further enhancing it to make it application-aware in this setup, we showed that the VIP application's flow can be automatically adjusted away from the path with degrading performance to the one that has good quality in order to guarantee its SLA requirements. Furthermore, we also demonstrated the flexible applicationaware SFC within the framework of APN6.

II. APPLICATION-AWARE IPV6 NETWORKING

IPv6/SRv6 has some programmable space in their encapsulations, i.e. the IPv6 extension headers such as Hophy-hop Options Header (HBH) Destination Options Header (DOH) [5], and Segment Routing Header (SRH) [6] which is a new type of Routing Header (suggested value 4) currently being standardized in IETF. SRH itself also has some programmable space, e.g. the tag field, the argument field of each Segment ID (SID), and the SRH Type Length Value (TLV) [7]. These programmable space can be used to convey application characteristics information into the network and make the network aware of applications as well as their requirements. Accordingly, the network is able to steer the application flow into corresponding SRv6 TE tunnel or Policy to guarantee its SLA or set up a new one. This is the essential idea of APN6. The application characteristic information includes application-aware ID which identifies application. the user of application, and the SLA level, i.e. to indicate the packets as part of the traffic flow belonging to a specific Application/User/SLA level. It could also include network performance requirements information, specifying at least one of the following parameters: bandwidth, delay, loss ratio, etc.




Fig. 1. Application-aware IPv6 Networking Framework and Scenario

Now the VIP live video streaming is flowing along the path R2-R4-R5, which has deployed a VAS2: Log Audit at R4 against the VIP Application-aware ID 1. The video streaming flow will be audited accordingly. Therefore, we demonstrated the flexible application-aware SFC stitching application-

aware VAS together with the network nodes/routers. Controller IFIT Collector & Analyzer VAST

Fig. 2. The APN6 Demo Setup

Cheng Li, Jianwei Mao, Shuping Peng, Yang Xia, Zhibo Hu, Zhenbin Li Huawei Technologies, Beijing, China {c.l, maojianwei, pengshuping, yolanda.xia, huzhibo, lizhenbin} @huawei.com

Abstract-This demo showcased how application-aware G-SRv6 network provides fine-grained traffic steering with more economical IPv6 source routing encapsulation, effectively supporting 5G eMBB, mMTC and uRLLC services. G-SRv6. a new IPv6 source routing paradigm, introduces much less overhead than SRv6 and is fully compatible with SRv6. Up to 75 percent overhead of an SRv6 SID List can be reduced by using 32-bit compressed SID with G-SRv6, allowing most merchant chipsets to support up to 10 SIDs processing without introducing packet recirculation, significantly mitigating the challenges of SRv6 hardware processing overhead and facilitating large-scale SRv6 deployments. Furthermore, for the first time, by integrating with Application-aware IPv6 networking (APN6), the G-SRv6 network ingress node is able to steer a particular application flow into an appropriate G-SRv6 TE policy to guarantee its SLA requirements and save the transmission overhead in the meanwhile.

Keywords-SRv6 Compression, G-SRv6, APN6

I. INTRODUCTION

As 5G and industry verticals evolve, ever-emerging new services with diverse but demanding requirements such as low latency and high reliability are accessing to the network. Different applications have differentiated network Service Level Agreement (SLA). For instance, on-line gaming has highly demanding requirements on latency, live video streaming has high requirements on both latency and bandwidth, while backup traffic mainly requires more bandwidth but is less sensitive of latency. However, in current networks, the operators remain unaware of the traffic type traversing their network, making the network infrastructure essentially dumb pipes and losing application performance optimization opportunities. To solve this issue, Application-aware IPv6 networking(APN6) [1] is proposed, which takes advantage of the programmable space in the IPv6/SRv6 packet encapsulations to convey applicationaware information into the network layer, and makes network aware of applications and their requirements in order to provide fine-grained application-aware services.

SRv6 [2], as the underlying network protocol supporting APN6, enables the ingress node to explicitly program the forwarding path of packets by encapsulating/inserting ordered Segment ID (SID) list into the Segment Routing Header (SRH) at the ingress node, where each SID is 128-bit long. The SLA can be satisfied by steering the application packets into an explicit SRv6 programmable forwarding path. However, in some scenarios such as strict Traffic Engineering(TE), many SIDs will have to be inserted in the SRH, resulting in a lengthy SRH which imposes big challenges on the hardware processing. and affects the transmission efficiency especially for the small size packets in 5G uRLLC or mMTC scenarios. For instance, the size of an SRv6 encapsulation with 10 SIDs is 208 bytes,

https://ieeexplore.ieee.org/abstract/document/9162934, https://www.youtube.com/watch?v=ONgwxKVmPp0

recirculation. This has become a big obstacle for SRv6 deployment in practice.

We proposed Generalized Segment Routing over IPv6 (G-SRv6) [3][4][5] to address the challenges of SRv6 overhead. While compatible with SRv6, G-SRv6 provides a mechanism to encode Generalized SIDs (G-SID) in the Generalized SRH (G-SRH), where a G-SID can be a 128-bit SRv6 SID, a 32-bit compressed SID (C-SID) or some other types. A 32-bit C-SID saves 75% overhead of the SID, so that the size of SRH can be significantly compressed. It also supports incremental upgrade from SRv6 by encoding both SRv6 SIDs and C-SIDs in the SRH. With G-SRv6, most the merchant chipsets can support up to 10 SIDs processing without packet recirculation so that the challenges of SRv6 hardware processing is mitigated, facilitating the large-scale SRv6 deployment. So far, G-SRv6 has been implemented in Linux Kernel, and hardware devices from more than 10 vendors.

This demo showcases that APN6 over G-SRv6 enables finegrained traffic scheduling and efficient IPv6 source routing encapsulation for services in 5G scenarios, and what benefits G-SRv6 can provide over SRv6. Using APN6, the eMBB, mMTC. and uRLLC traffic is forwarded following the high-bandwidth path, the Service Function Chain (SFC) path, and the lowest latency path, respectively. Using APN6 over G-SRv6, over 50% transmission overhead is reduced, and the Flow-Completion Time (FCT) is shortened from 923s to 102s. Comparing to SRv6 (with 10 SIDs in SRH), the forwarding rate of an SRv6 endpoint node is raised by 55% from 400Mpps to 620Mpps. In summary, the application-aware G-SRv6 helps network operators to reduce the cost and generate more revenue in the 5G area.

II. APPLICATION-AWARE G-SRV6

Normally, SRv6 SIDs are allocated from an address block within an SRv6 domain, so the SIDs share the common prefix (CP) of the address block[5]. An SRv6 SID has the format shown in Fig. 1.

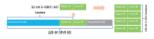


Fig. 1. Format of the128-bit SRv6 SID and 32-bit G-SID

In most cases, only Node ID and Function ID are different among the SIDs in a SID list, while the common prefix and argument parts are redundant. Removing the redundant parts of the SID list can reduce the overhead. Generalized SRv6 (G-SRv6) realizes this idea. It only carries the compressed SID consisting of node ID and Function ID in the SRH, so that the size of the SRH is compressed. Theoretically, up to 75%

dillos 1000es 1 Bytes) over a 10-hop path: Without APN6, the traffic is forwarded following the shortest path. Using APN6 over SRv6(G-SRv6, the traffic is forwarded over the Service Function Chain (SFC) path with a firewall deployed in MEC for Fig. 2. Comparison between SRv6 and G-SRv6

In order to locate the 32-bit C-SID within the 128-bit space located by Segment Left (SL) in SRH, Segment Index (SI) is defined, and it is the least 2 bits in the argument of the active SID in the IPv6 destination address (DA) field. Furthermore, a Continuation of Compression (COC) flavor is defined [5] to instruct the Segment Endpoint Node to continue to process the 32-bit C-SID in the SRH. When an SRv6 endpoint node receives a SID with COC Flavor, it updates the 32-bit G-SID in the IPv6 DA with the next 32-bit G-SID, and the next G-SID is located at SRHISLISII. Otherwise, the node performs normal SRv6 processing[5]. In application-aware G-SRv6 networks, APN6 ID is added into the IPv6 Hop-by-Hop (HBH) header by

application clients and servers to convey the application information to the network layer, so that the network nodes can be aware of the application type of a user group and its requirements. When APN6 packets with APN6 ID are received

support adding ÅPN6 ID to packets. Next, we enhanced Nginx

Function Chain (and opportunity to SRv6, the SDD list (10 SDD) is security checking. Comparing to SRv6, the SDD list (10 SDD) is compressed from 160 bytes to 64 bytes in G-SRv6. In this situation, the forwarding rate of an SRv6 endpoint node is raised by 55% from 400Mpps to 620Mpps in G-SRv6 due to no packet 3) uRLLC real-time message exchanging traffic (Pavload size:128 Bytes) over the 9-hop shortest path: Using APN6, the traffic is forwarded through the lowest latency path, and the latency is shortened from 300.114ms to 0.259ms comparing to another path. Comparing to SRv6, 45.45% transmission overhead is reduced in G-SRv6, and bandwidth utilization is increased from 42.11% to 57.14%

102s. 53.33% transmission overhead is reduced, and bandwidth

2) mMTC IoT metadata transmission (Payload size: 128

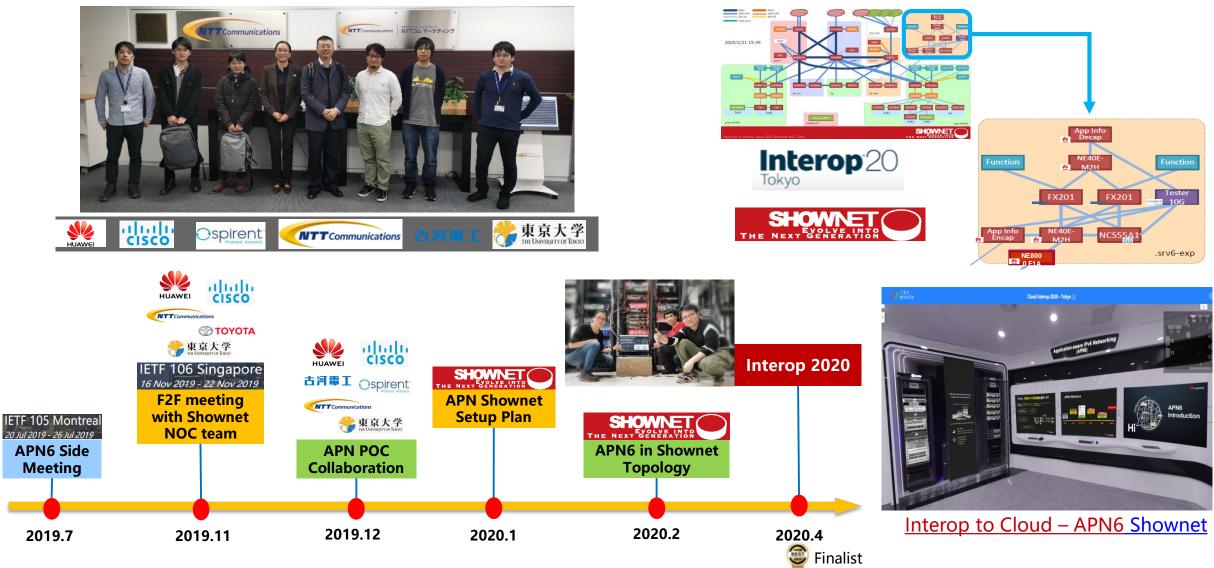
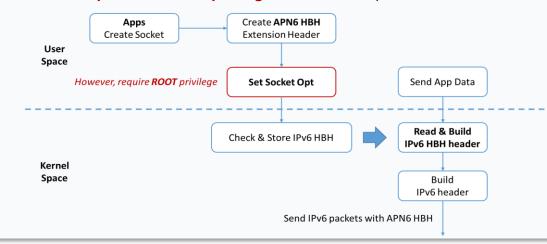
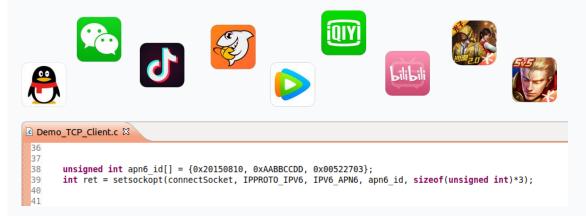

utilization is increased from \$3.07% to 92.79%.

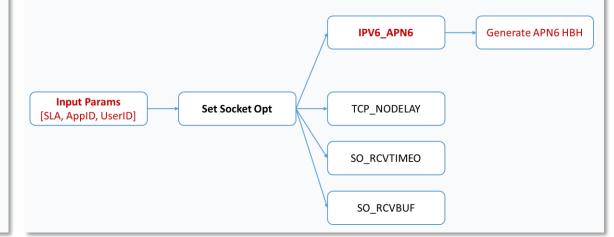
Fig. 3. Application-aware G-SRv6 demo sets

at the G-SRv6 ingress node, the node steers the packets into associated policies. III. DEMONSTRATION We have implemented APN6 function in Linux kernel to


APN6@Interop Tokyo2020



Exploring APN Application-side Solution: Open Source Implementation with Linux

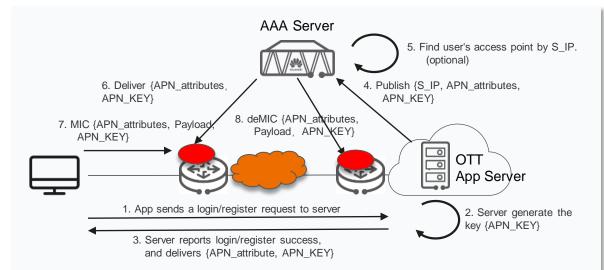

① Latest kernel supports to bind an arbitrary HBH extension header with a socket, but that **requires the ROOT privilege**. That is unacceptable.

③ Then, Apps need to be upgraded to take advantage of the extended API, **binding the socket with APN attributes.**

② So, we need to **extend the socket API**, to allow Apps passing in APN attributes, and to generate HBH extension header securely in the kernel.

Operation of the specified HBH extension header with APN attributes successfully.

0000	e2	4c	96	0e	b1	94	fe	7a	f5	48	09	16	86	dd	60	05	·L····z ·H····`
0010	b5	df	00	63	00	40	20	01	0d	a8	02	15	00	0a	00	00	····c·@ · ······
0020	00	00	00	00	aa	aa	20	01	0d	a8	02	15	00	0a	00	00	
0030	00	00	00	00	bb	bb	<u>0</u> 6	01	03	0c	aa	aa	08	10	00	00	· · · · · · · · · · · · · · · · · · ·
0040	aa	aa	00	52	27	03	e0	68	15	87	07	ea	1d	62	6d	b9	•••R'••h ••••bm•
0050	79	6e	80	18	01	fb	c 6	4f	00	00	0 <mark>1</mark>	01	08	Øa	85	27	yn0'
0060	28	ас	15	b4	b4	07	2e	2e	2e	2e	2e	2e	2e	2e	2e	2e	(
0070	63	6f	6e	74	61	63	74	20	42	65	69	6a	69	6e	67	20	contact Beijing
0080	54	6f	77	65	72	20	6f	6e	20	31	31	38	2e	35	2c	20	Tower on 118.5,
0090	67	6f	6f	64	20	64	61	79	21								good day !



Exploring APN Application-side Solution: Potential Security Solutions

Objective: Securely deliver and transport APN attributes to defend against attacks such as falsification, resource stolen, and DDoS attacks.

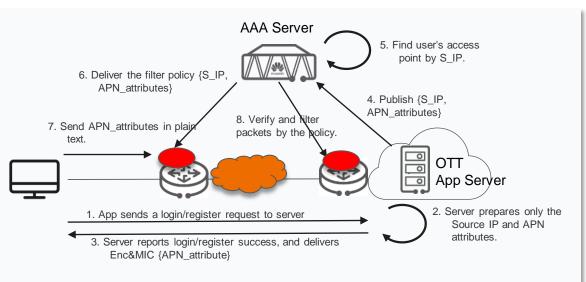
Solution A:

Control plane delivers the cryptographic key. Data plane encrypts the APN attributes.

App Servers are responsible for update and management of cryptographic key, and secure delivery of APN attributes and the key.

Access devices in the network decrypt and verify the APN attributes.

Advantage:


A) Clear security boundaries. B) Reliable cryptographic mechanisms

Challenge:

A) Management of massive keys. B) Performance pressure from cryptographic algorithms.

Solution B:

Control plane delivers the filter policies. Data plane sends APN attributes in plain text.

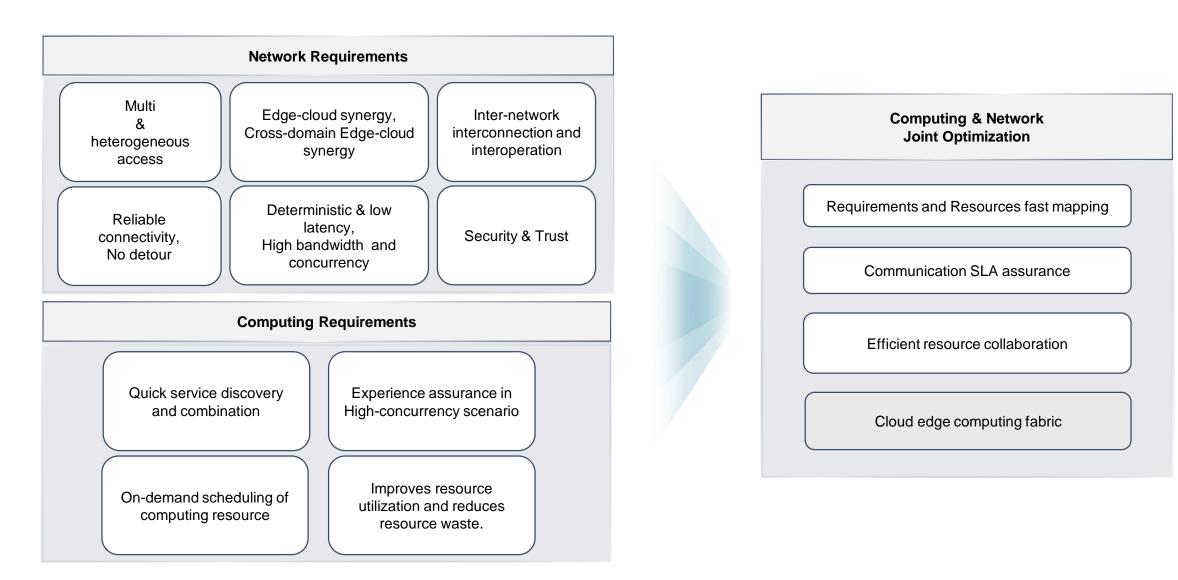
App Servers are only responsible for secure delivery of APN attributes. **Access devices in the network** deploy filter policy for security.

Advantage:

A simple and high-efficient method to maintain access security. **Challenge:** A) Management of increasing policies

B) Rely on the location of user's access point, which means relying on the network topology.

Protect high-quality resources. Protect subscribers' charging. Enhance stability and trust of the network.

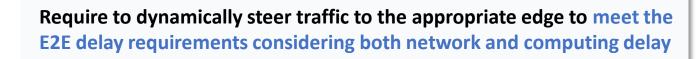


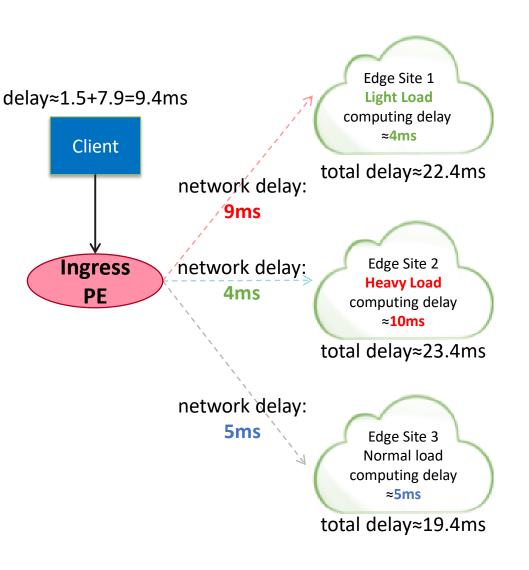
Agenda

- IPv6 Enhanced
- APN: Application-aware Networking
- CAN: Computing-aware Networking
- Summary

Computing and Network Joint Optimization

Typical Application - AR/VR in MEC: Traffic Steering based on Comprehensive Network and Service Metrics

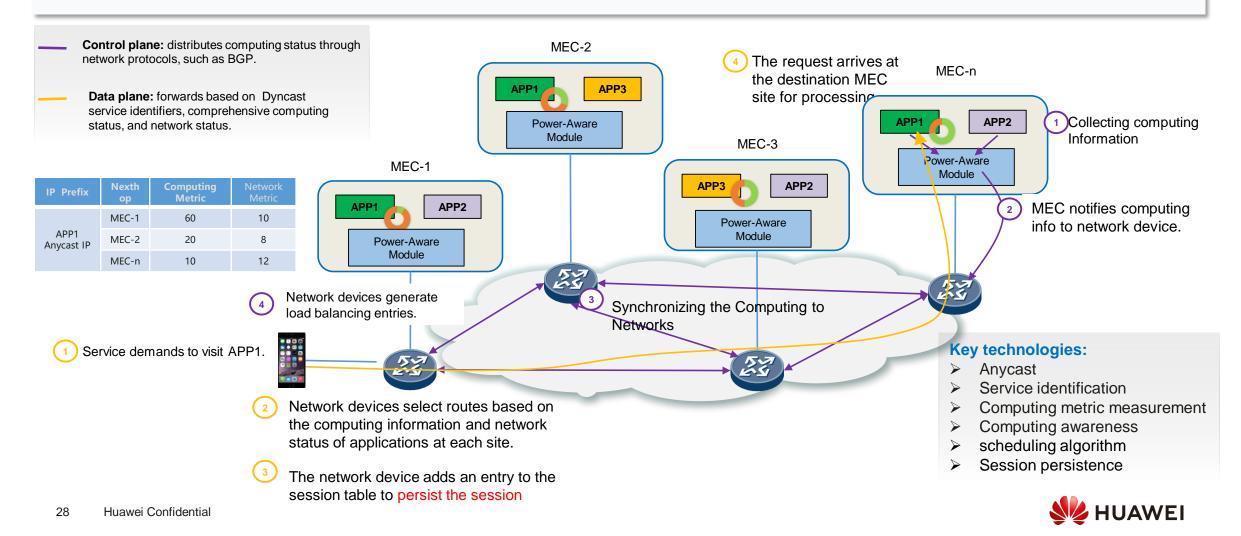

Upper bound latency for motion-to-photon(MTP): includes frame rendering and requires less than **20 ms** to **avoid motion sickness**, consisted of:


- 1. sensor sampling delay: <1.5ms (client)
- 2. display refresh delay: ≈7.9 ms(client)
- 3. frame rendering computing delay with GPU≈ 5.5ms (server)
- 4. network delay(budget) =20-1.5-7.9-5.5 = 5.1ms(network)

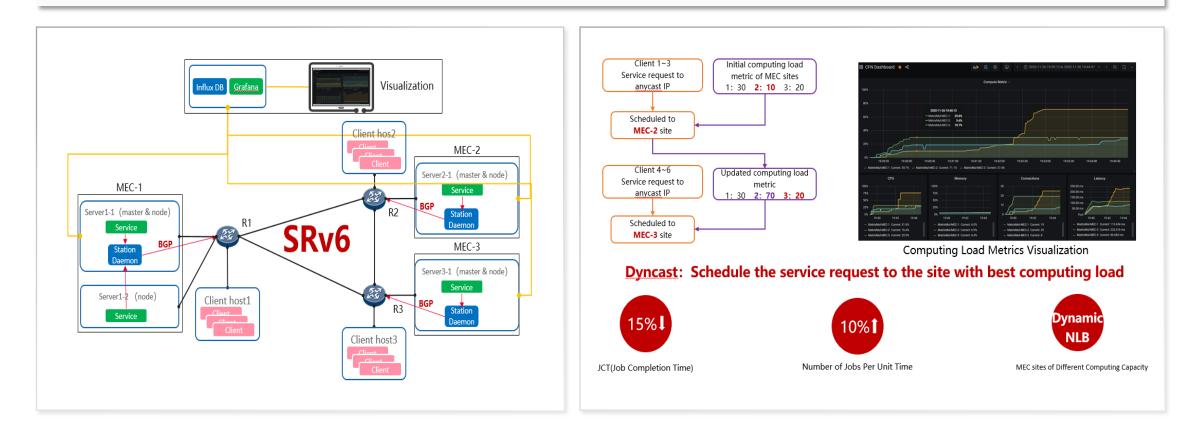
Budgets for computing delay and network delay are almost equivalent!!

- choose edge site 1 according to load only, total delay≈22.4ms
- choose edge site 2 according to network only, total delay≈23.4ms
- choose edge site 3 according to both, total delay≈19.4ms

It can't meet the total delay requirements or find the best choice by either optimize the network or computing resource:


PS: Computing resources have a big difference in different edges, and the 'closest site' may be good for latency but lacks GPU support and should therefore not be chosen.

Distributed mode: Dyncast for Computing-aware Routing


Dyncast (Dynamic Anycast) is a key technology of Computing aware routing. It inherits the advantages of anycast in fast, reliable, and anti-DDoS.

Distributed computing is the endogenous resource in the computing aware network. Dyncast is used to connect the distributed computing to the network to provide
optimal computing allocation and network connection for customers, achieving high reliability of edge computing and optimal overall system utilization efficiency.

Computing-aware Routing (Dyncast) Demo

Computing-aware routing (Dyncast) demo based on physical D-Router in Chinese ECIS2020 (Edge Computing Industrial Summit), Partner: China Mobile

Standard Progress in IETF: CAN BOF of IETF 113

Meeting

- Dyncast Side Meeting @IETF109 & @IETF110
 - https://github.com/dyncast/ietf109
 - https://github.com/dyncast/ietf110

• CAN BOF @IETF113

https://datatracker.ietf.org/group/can/about/

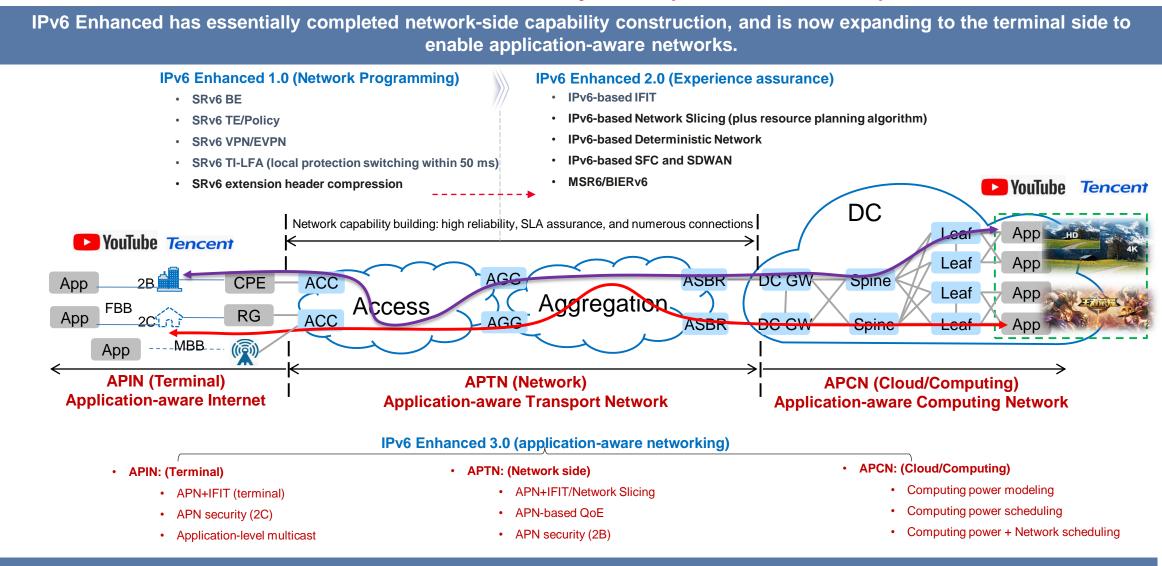
Groups Documents Meetings Other jescia.chenxia@huawei.com

Computing-Aware Networking (can)

About	Documents	Meetin	gs History	Photos	Email expansions	List archive »			
WG		Name	Computing-Aware Networking						
	А	cronym	can						
		Area	Routing Area (rtg)						
		State	BOF						
		Charter	(None)						
	Depen	dencies	Document dependency graph (SVG)						
Personne	-1	Chairs	Linda Dunbar 🖂						
			Zhaohui Zhang 🖂						
	Area l	Director	John Scudder 🖂						
Mailing l	ist .	Address	dyncast@ietf.org						
	To su	ıbscribe	https://www.ietf.org/mailman/listinfo/dyncast						
		Archive	https://mailarchive.ietf.org/arch/browse/dyncast/						
Jabber cl	nat Room	address	xmpp:can@jabber.ietf.org?join						
		Logs	https://jabber.ietf.org/logs/can/						

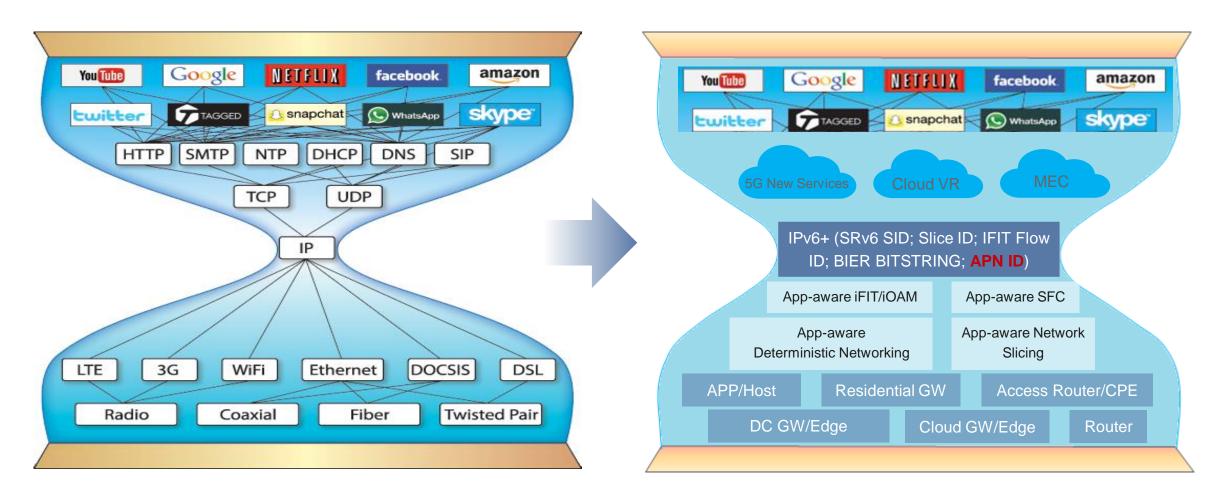
Draft

Draft topic	Draft name
Dynamic-Anycast (Dyncast) Use Cases & Problem Statement	draft-liu-dyncast-ps-usecases
Dynamic-Anycast (Dyncast) Requirements	draft-liu-dyncast-reqs
Dynamic-Anycast Architecture	draft-li-dyncast-architecture
Providing Instance Affinity in Dyncast	draft-bormann-dyncast-affinity
LISP Support for Dynamic Anycast Routing	draft-kjsun-lisp-dyncast
BGP NLRI App Meta Data for 5G Edge Computing Service	draft-dunbar-idr-5g-edge-compute-app-meta-data
Computing-aware Networking Use case of ALTO	draft-liu-alto-can-usecase
Use Cases for Computing-aware Software-Defined Wide Area Network(SD-WAN)	draft-zhang-dyncast-computing-aware-sdwan-usecase



Agenda

- IPv6 Enhanced
- APN: Application-aware Networking
- CAN: Computing-aware Networking
- Summary


Whole Picture of IPv6 Enhanced Phases and APxN Systems (APTN/APIN/APCN)

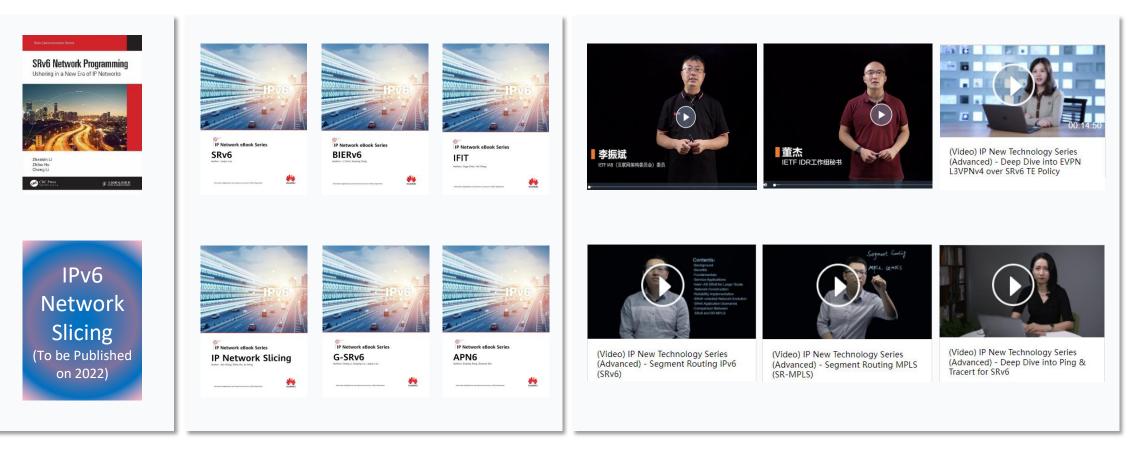
Defines the service layer beyond the underlay and overlay to implement application-level visualization, optimization, and assurance.

Change of TCP/IP "Thin Waist" Model and IPv6-based 3.5 Layer Innovation

Internet-Oriented TCP/IP "Thin Waist" Model

Limited-Domain-Oriented IPv6-based "Fat Waist" Model

Summary of Usage of IPv6 Extension Headers


		IPv6 Extension Header				
Functionalities	RFC/Drafts	HBH Header	Routing Header	DO Header		
SRv6	RFC8754		V			
VPN+ (Network Slicing)	 draft-ietf-spring-resource-aware-segments draft-ietf-6man-enhanced-vpn-vtn-id 	V	V			
IFIT (In-situ Flow Telemetry)	 draft-ietf-6man-ipv6-alt-mark draft-ietf-ippm-ioam-data draft-ietf-ippm-ioam-ipv6-options 	V	V	V		
MSR6/BIERv6	 draft-lx-msr6-rgb-segment draft-geng-msr6-traffic-engineering 		V	V		
APN6	 draft-li-apn-header draft-li-apn-ipv6-encap 	V	V	V		

IPv6 Enhanced Series Books and Videos

IPv6 Enhanced Books IPv6 Enhanced Series Books

IPv6 Enhanced Series Videos

IPv6 Enhanced Series Books and Videos

IPv6 Enhanced Books

https://www.amazon.com/SRv6-Network-Programming-Ushering-Communication/dp/1032016248

IPv6 Enhanced Series eBooks

https://e.huawei.com/en/material/bookshelf/bookshelfview/202109/29105716

IPv6 Enhanced Series Videos

https://support.huawei.com/enterprise/en/routers/netengine-8000-pid-252772223/multimedia

Thank you.

把数字世界带入每个人、每个家庭、 每个组织,构建万物互联的智能世界。 Bring digital to every person, home and organization for a fully connected, intelligent world.

Copyright©2018 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.

