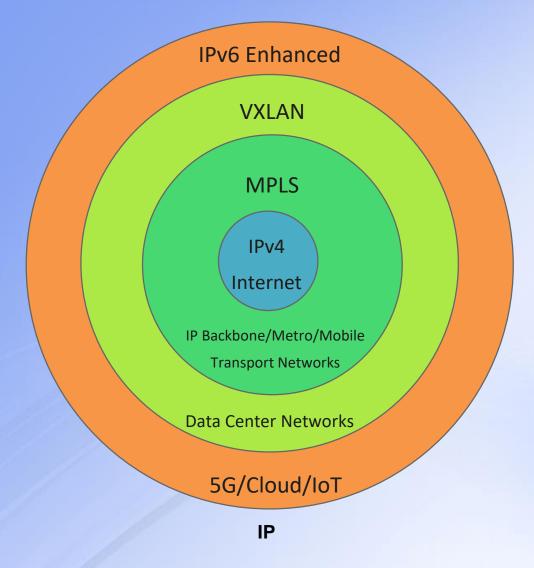
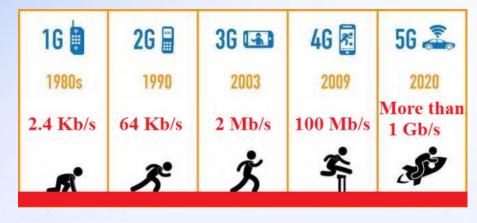
Progress of IPv6 Enhanced Standard and Industry

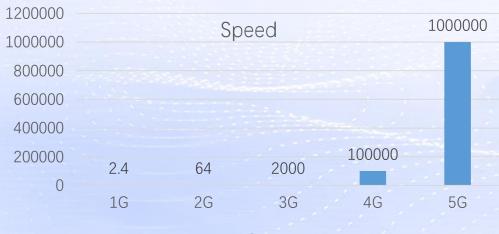
Zhenbin Li

Huawei Chief IP Protocol Expert IETF Internet Architecture Board (IAB) Member

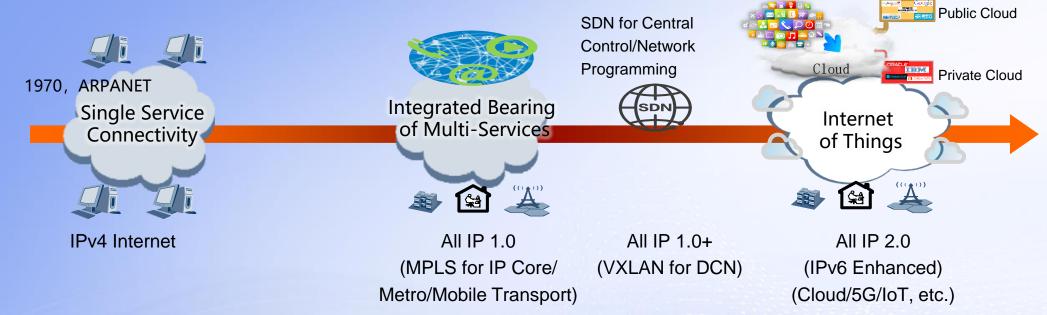



Zhenbin (Robin) Li

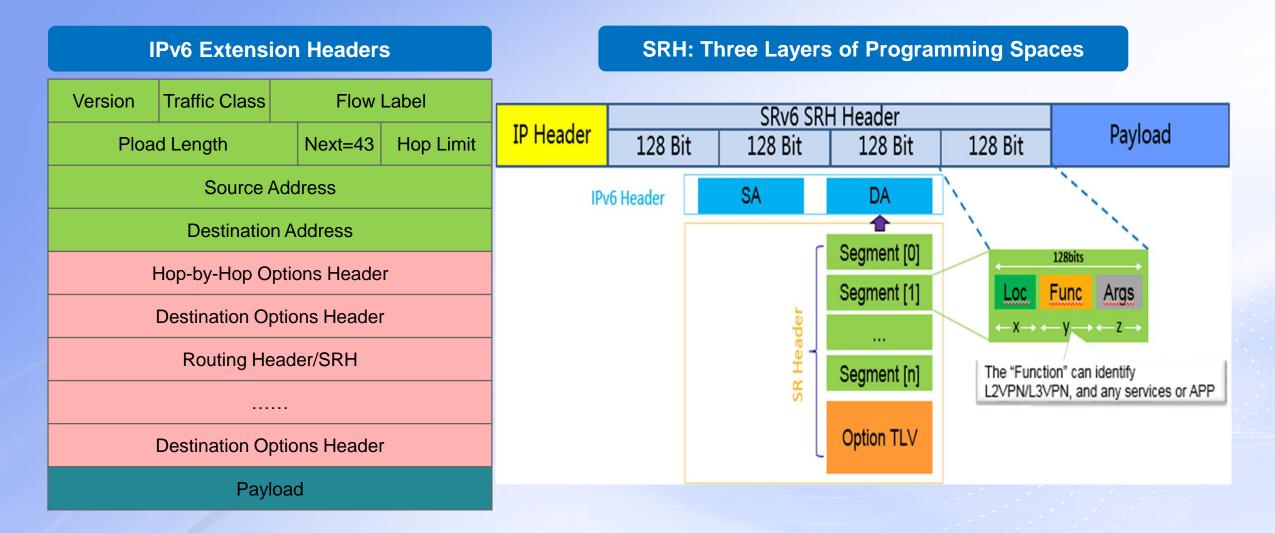
Huawei Chief IP Protocol Expert IETF Internet Architecture Board (IAB) Member https://www.iab.org/about/iab-members/


- 15+ years research and development work in IP Operating System and SDN Controller as the system architect.
- Be active in standard activities since IETF75 and propose 100+ drafts/RFCs in RTG/OPS areas (www.ipv6plus.net/ZhenbinLi).
- Promoted SDN Transition (Netconf/YANG, BGP/PCEP, etc.) innovation and standard work in the past years.
- Focus on the innovation standard work of SRv6, 5G Transport, Telemetry, Network Intelligence, etc. since 2016.
- Publish the book "SRv6 Network Programming: Ushering in a New Era of IP Networks"
- Be elected as the IETF IAB member to be responsible for Internet architecture work from 2019 to 2020.
- Be elected again as the IETF IAB member to be responsible for Internet architecture work from 2021 to 2022.

IP Evolutions: Applications Drives the Change of IP Network Architectures



Wireless


Optical

IPv6 Enhanced - A New Era of IP Networks for 5G and Could

- Rethinking on IPv6: Address Space is not enough.
- New Chance of IPv6: 5G changes the attributes of connections, and cloud changes their scope.
- Mission of IPv6 Enhanced:
 - Integrate different network easier based on affinity to IP reachability.
 - Provide more encapsulations for new network services such as Network Slicing, DetNet, etc.
 - Cross the chasm between application and network based on affinity to IP and Network Programming conveying application information through IPv6 Extension Header into network.
 - Promote IPv6 combining with requirements on more address spaces.

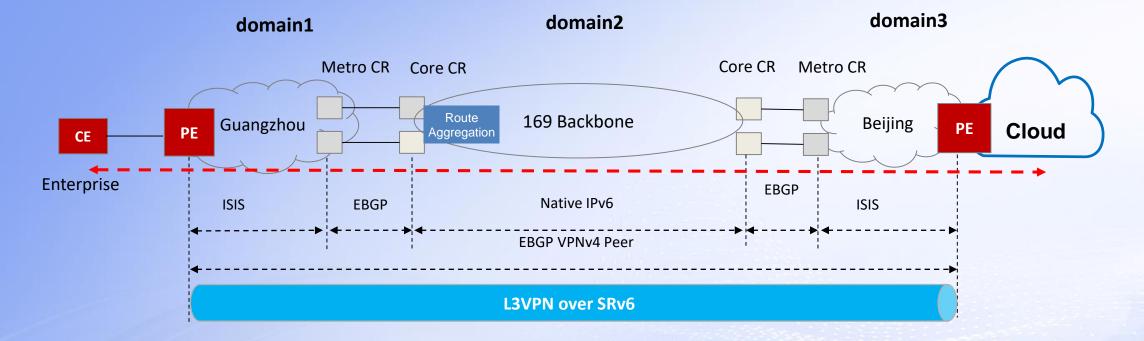
IPv6 Extension Headers and SRv6: Release Network Programming Capabilities

IPv6 Enhanced Research and Standard Planning

IPv6 Enhanced 1.0: SRv6 Basic Capabilities

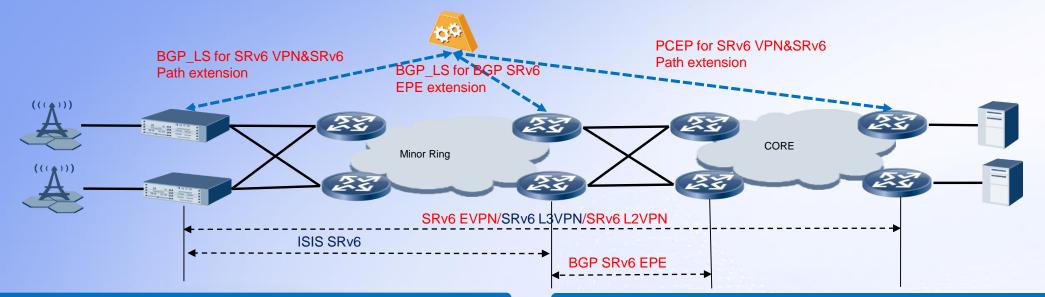
- SRv6 VPN
- SRv6 TE
- SRv6 FRR

IPv6 Enhanced 2.0 : New Network Services for 5G/Cloud


- Network Slicing/VPN+
 OAM
 SFC
- In-situ Telemetry/IFIT
 Path Segment
- BIERv6
 Detnet
- SRv6 Compression/G-SRv6

SD-WAN

IPv6 Enhanced 3.0: APN6 – App-aware network architecture


- Forwarding Plane: Conveying Application information via IPv6 extension header
- Control Plane: Exchange Application information through control protocols

SRv6 Evolution: End-to-end Network Unified Forwarding Process

- Simplicity: Work based on IPv6 reachability, no extra signaling.
- **Convergence:** 10+ Protocols are converged to SRv6 + EVPN to simplify the service provisioning.
- E2E: Unified process to converge different IP network domain. TE and SFC can be deployed incrementally and easily.
- **Extensibility:** Possibility to be extended to support more new services based on IPv6 as the starting point.

Stable Standards and Large-scale Deployment with Multiple Implementations

SRv6 Standardization on Basic Solutions

		RFC/Drafts
SRv6 Arch	0	RFC8986
SRH	0	RFC8754
SRv6 VPN	0	WGLC
ISIS for SRv6	0	WGLC
OSPFv3 for SRv6	0	WG Draft
BGP-LS for SRv6	0	WGLC
BGP Policy for SRv6	0	WGLC
PCEP for SRv6	0	WG Draft
	SRv6 VPN SIS for SRv6 DSPFv3 for SRv6 BGP-LS for SRv6 BGP Policy for SRv6 PCEP for SRv6	SRv6 VPNOSIS for SRv6OOSPFv3 for SRv6O3GP-LS for SRv6O3GP Policy for SRv6O

SRv6 Deployment and Implementations

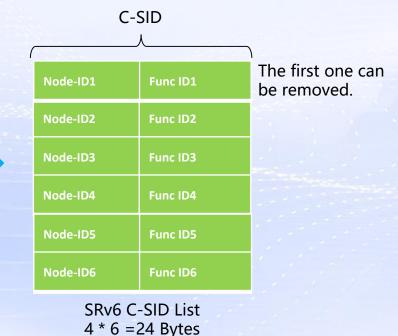
- Deployments:
 - Softbank, China Telecom, Iliad, LINE, China Unicom, CERNET2, MTN, NOIA, Rakuten, Bell Canada, Alibaba, etc.
- Implementations:
 - Open Souce Platforms: Linux, FD.io VPP, P4, etc.
 - Routing Platforms: Huawei, Cisco, Accrus, Nokia, Broadcom, Barefoot, Marvell, Spirent, Ixia, etc.
- Inter-op Test:
 - EANTC 2018 2021, etc.
- See <u>draft-matsushima-spring-srv6-deployment-status</u> and <u>draft-tian-spring-srv6-deployment-consideration</u> for details

SRv6 Compression: Converged Single Solution and C-SID draft adopted by WG

IETF SPRING WG

- draft-ietf-spring-srv6-srh-compression(C-SID) is adopted.
- C-SID draft defines flavors for the SR endpoint behaviors, which enable a compressed SRv6 Segment-List encoding in the Segment Routing Header (SRH).
 - Replace-C-SID Flavor a.k.a G-SRv6
 - Next-C-SID Flavor a.k.a uSID
 - Next-and-Replace-C-SID Flavor
- All the flavors are defined under the SRv6 network programming architecture RFC8986.
- Replace-C-SID flavor SID and Next-C-SID can be encoded in a single SRH for better interop, and the interop test had been done in 2020.

SPRING	W. Cheng, Ed.
Internet-Draft	China Mobile
Intended status: Standards Track	C. Filsfils
Expires: 22 September 2022	Cisco Systems, Inc.
	Z. Li
	Huawei Technologies
	B. Decraene
	Orange
	D. Cai
	Alibaba
	D. Voyer
	Bell Canada
	F. Clad, Ed.
	Cisco Systems, Inc.
	S. Zadok
	Broadcom
	J. Guichard
	Futurewei Technologies Ltd.
	L. Aihua
	ZTE Corporation R. Raszuk
	NTT Network Innovations
	C. Li
	Huawei Technologies
	21 March 2022


Compressed SRv6 Segment List Encoding in SRH draft-ietf-spring-srv6-srh-compression-01

C-SID is the recommended solution as per the DT's analysis result, which meet all the compression reqs

G-SRv6: SRv6 Compressed SID

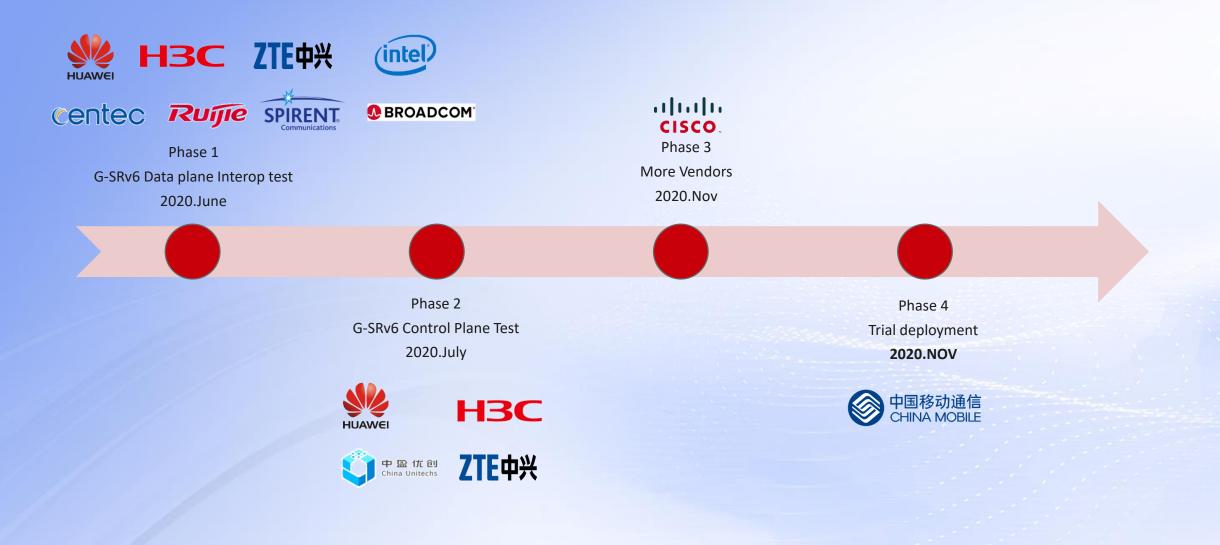
- A normal SRv6 SID is a 128 bits IPv6 address allocated from an address block, called SID Space.
- For the SIDs in the SID list within an SRH, they may share the common prefix, and the common prefix is redundant that can be deleted to reduce the overhead.
- Each SRv6 SID has the format shown below, we called the different part of the SRv6 SID is compressed SID(C-SID), and the SID is a Compressible SRv6 SID.
- The prefix can be managed according to the real network address planning.
- Common Prefix is included in the first SID in the IPv6 Destination address.

Locator	C-		
Common Prefix	Node-ID1	Func ID1	Arg/Padding(opt)
Common Prefix	Node-ID2	Func ID2	Arg/Padding(opt)
Common Prefix	Node-ID3	Func ID3	Arg/Padding(opt)
Common Prefix	Node-ID4	Func ID4	Arg/Padding(opt)
Common Prefix	Node-ID5	Func ID5	Arg/Padding(opt)
Common Prefix	Node-ID6	Func ID6	Arg/Padding(opt)

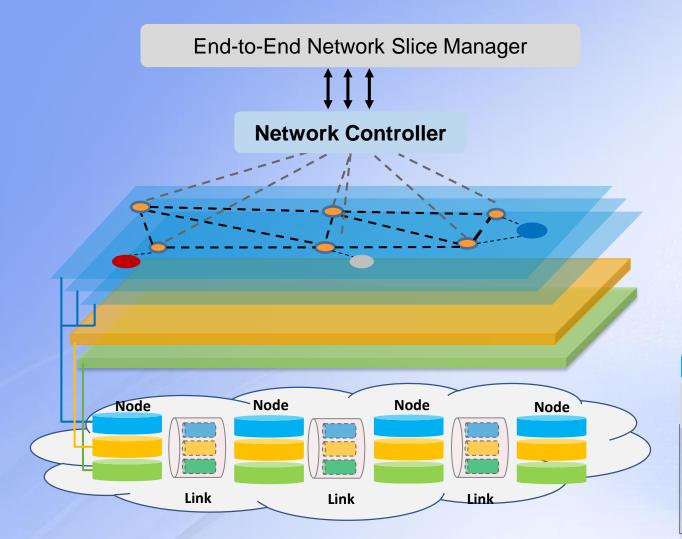
G-SRv6: Mixed Programming of SID and C-SID

Solution: use SL to index a 128 bit G-SID, use CL to index C-SID inside this G-SID!

- C-flag in control plane: indicates the format of the SRv6 SID is compressible. The SID can be encoded as 128 or 32 bits in SRH
- COC(Continuation of Compression) flavor indicate the next SID is a 32-bits Compressed SID(C-SID)
- CL (Compressed SID left, the args of the compressible SRv6 SID) indicates the location of C-SID within the G-SID
- Update C-SID from SRH[SL][CL] to IPv6 DA[CP: CP+31]


Со	mmon Prefix	C-SID	CL	Padding(Opt)
	COC Flavor	SRv6 SID in IPv6 DA	\smile	

Pros


- 1. Fully compatible with SRH, NO modification of SRH
- 2. Fully compatible with SRv6, add COC Flavor endpoint behaviors, no affect of existing SIDs
- 3. Fully compatible with SRv6 control plane: (Can be) No modification of Control Plane
- 4. Address saving & easy to deploy:
 - 1. Flexible address planning, does not require for a short common prefix
 - 2. No new address required when reusing the Locator
 - 3. No new route, no modification of routing scheme(can share the same locator with normal SRv6 SIDs)
 - 4. Compressible SRv6 SID can be used as 128 bits or 32 bits. Reduce the number of SIDs.
- 5. Less overhead: A common prefix for a compressed sub-path instead of per 128 bits SID
- 6. Smooth upgrade/Incremental deployment: encode SRv6 SIDs and C-SIDs in a G-SRH
- 7. Hardware Friendly: No index mapping table
- 8. Compatible with Micro SID

Version Traffic Class Flow Label							
Pay	Hop Limit						
Source Address							
	Prefix C-SID CL 0						
Next Header	Hdr Len	Routing Type	Segments Left				
Last Entry	Flags	Г	ag				
		32 bits co	pied to C-SID				
128 bit SID							
	1	Padding					
4*32 bit		C-SID0					
G-SID							
C-SID2(COC Flavor)							
C-SID0(COC Flavor)							
4*32 bit C-SID1(COC Flavor)							
G-SID	C-SID2	2(COC Flavor)					
C-SID3(COC Flavor)							
Compression G-SID							

G-SRv6 Interop-test and Trial Deployment

IP Network Slicing Architecture

Network Slice Management

- Dynamic/automatic network slice life-cycle management
 - Creation, monitoring, adjustment, deletion
- Network slice planning algorithms

Network Slice Instantiation

- Customize network slice topology and associated attributes
- SRv6/IPv6 based
- Integration between overlay connectivity and underlay resource

Network Resource Partitioning

- Flexible Ethernet (FlexE)
- Logical sub-interface
- Dedicated queues
- Time Sensitive Networking (TSN)

https://tools.ietf.org/html/draft-ietf-teas-enhanced-vpn

Sublf

FlexE1

FlexE2

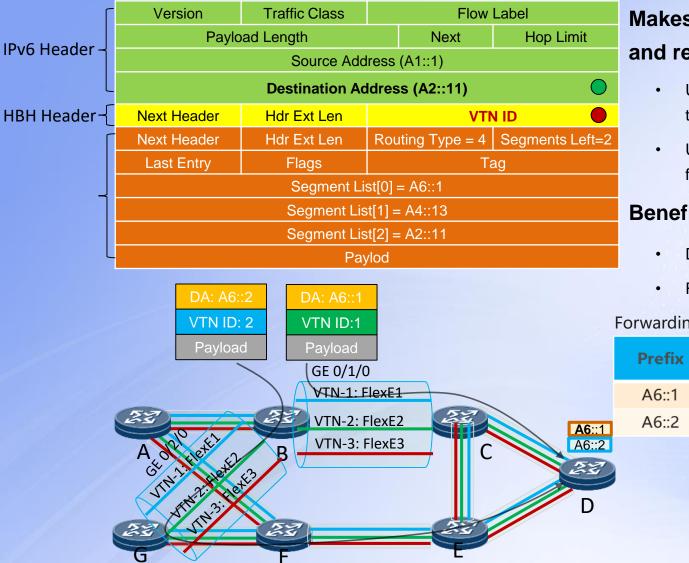
FlexE3

FlexE1

FlexE2

FlexE3

VTN-ID


2

3

2

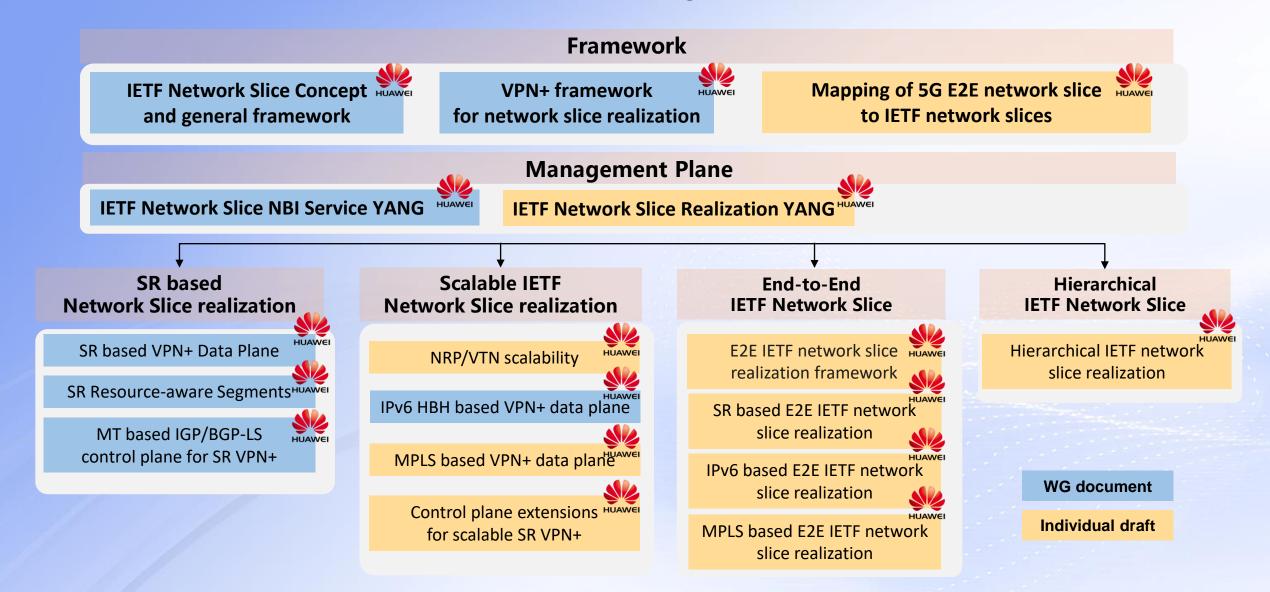
3

IPv6 Encapsulation for Network Slice

Makes use of two separate data plane identifiers for topology and resource specific forwarding treatment

- Use IPv6 destination address to determine the next-hop and outgoing interface in the specified topology
- Use VTN ID field to determine the network resource for packet processing & forwarding

Benefits of this approach:

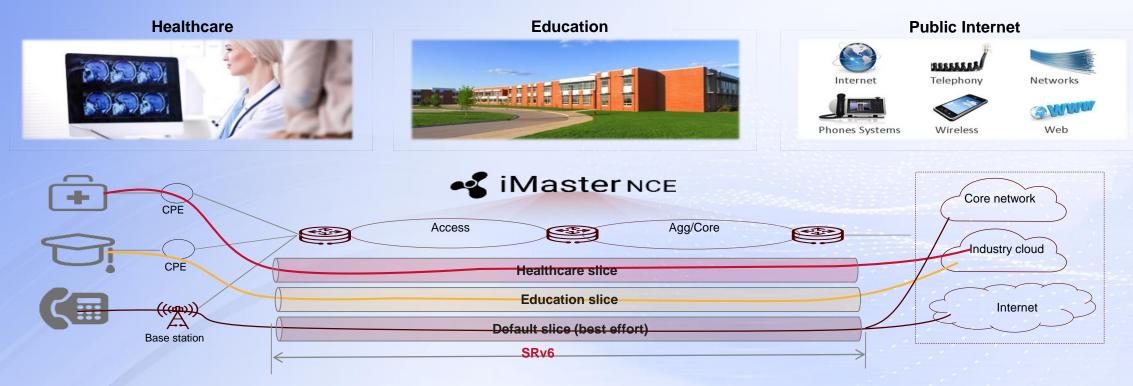

- Decouple the topology/path identifier and the resource identifier in data packet
- Reduce the number of SRv6 Locator/SID needed for slicing, improve scalability

Forwarding table of node B:

	Prefix	Next- hop	Outlf		
H				Mainlf	1
	A6::1	С	GE0/1/0	GE0/1/0	
	A6::2	G	GE0/2/0		
				GE0/1/0	
				GE0/1/0	
				GE0/2/0	
				GE0/2/0	
				GE0/2/0	

IPv6 VTN-ID Extensions : *tools.ietf.org/html/draft-dong-6man-enhanced-vpn-vtn-id*

IETF Standards on Network Slicing

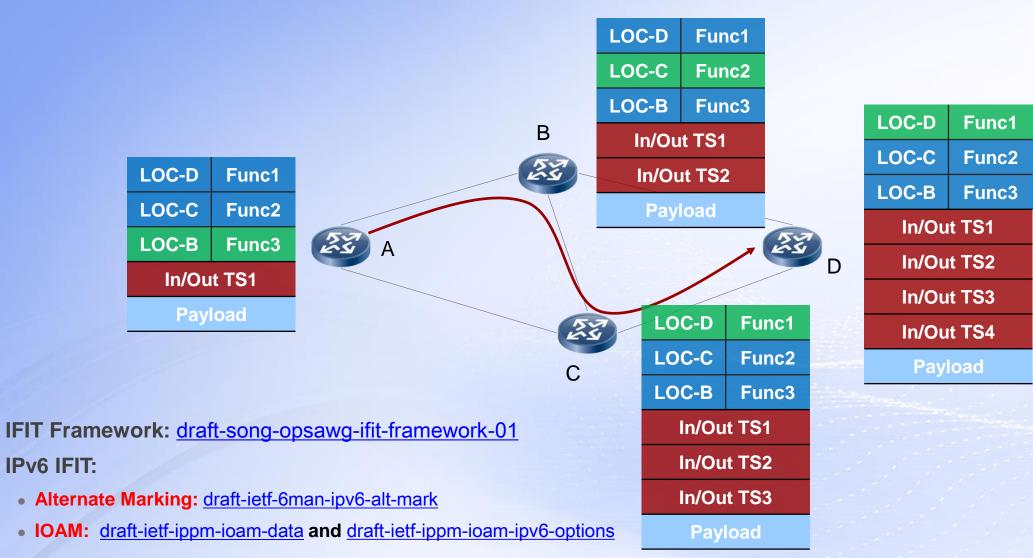

IP Network Slice Deployment Cases

30+ Network Slice deployments worldwide

- Multi-industrial network
- Fix-Mobile Convergence

- Premium Private Lines
- Multi-service networks

Operator N: Network Slicing for Multiple Vertical Industrials

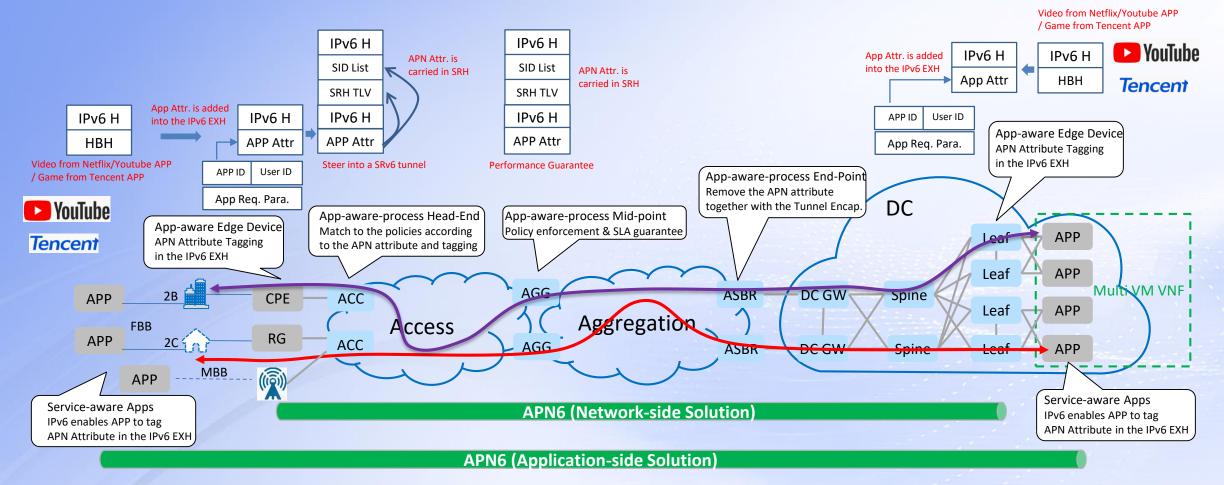


...

...

Please refer to visit draft-ma-teas-ietf-network-slice-deployment for details

IPv6 IFIT (In-situ Flow Information Telemetry)


Progress of IFIT Standards

Area	Торіс	Drafts
Framework	In-situ Flow Information Telemetry Framework	draft-song-ifit-framework
	Data Fields for In-situ OAM	draft-ietf-ippm-ioam-data
Basic Encap	In-situ OAM Direct Exporting	draft-ietf-ippm-ioam-direct-export
	Enhanced Alternate Marking Method	draft-zhou-ippm-enhanced-alternate-marking
	IPv6 Application of the Alternate Marking	draft-ietf-6man-ipv6-alt-mark
Encap type	SRH for the Alternate Marking	draft-fz-spring-srv6-alt-mark
	In-situ OAM Processing in Tunnels	draft-song-ippm-ioam-tunnel-mode
	BGP SR Policy for IFIT	draft-ietf-idr-sr-policy-ifit
Control Plane	PCEP SR Policy for IFIT	draft-chen-pce-sr-policy-ifit
	IGP/BGP-LS for IFIT	draft-wang-lsr-ifit-node-capability-advertisement
YANG model	A YANG Data Model for In-Situ OAM	draft-ietf-ippm-ioam-yang

VPN+ IFIT APN

App-aware IPv6 Networking (APN6) Framework

- Make use of IPv6 extensions header to convey APN attribute along with the packets into the network
- To facilitate the flexible policy enforcement and fine-grained service provisioning

https://datatracker.ietf.org/doc/draft-li-apn-framework/ https://ieeexplore.ieee.org/abstract/document/9162934

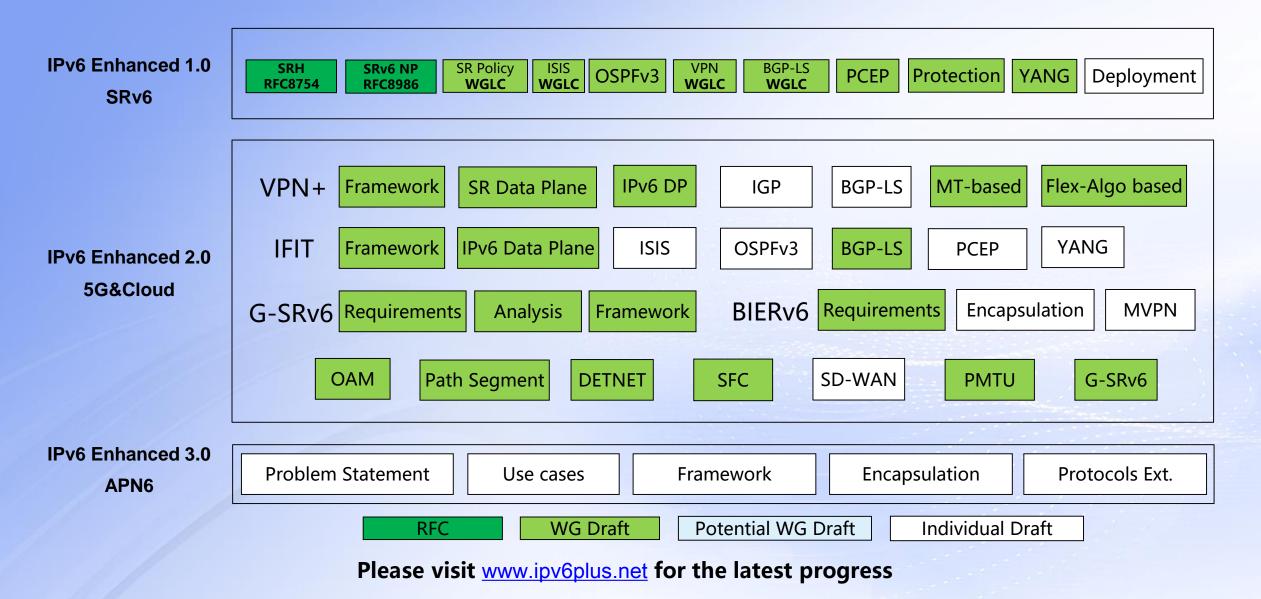
More Industry Consensus on APN and Approved IETF APN BOF

- Side Meetings @IETF105 & IETF108
- Hackathons @IETF108 & IETF109 & IETF110
- Demos @INFOCOM2020 & 2021
- APN Mailing List Discussions <u>apn@ietf.org</u>
- APN Interim Meeting @IETF 110-111
- APN BoF @IETF111, Approved @30th July 2021 1200-1400 PDT

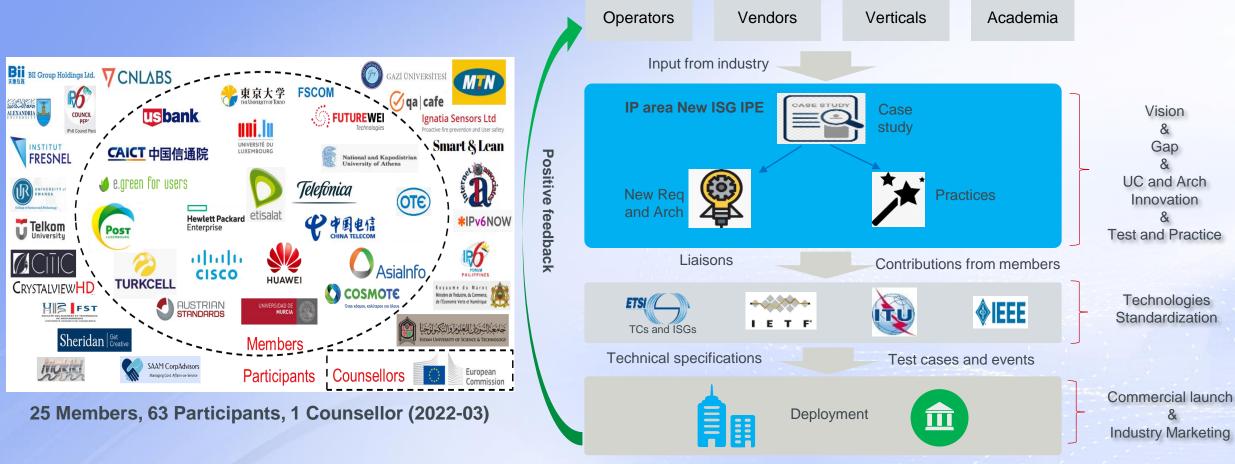
	IETF108	32	
	✓ Participants (66)	HUAWEI	
2	Q Search	Google	
🔗 Brian Trammell	SP Q Shuping Peng Me		
Adi Mokho, Huawei, Adi.molikhoijihuawei.com	Dhrux Dhody (Huawei - India) Peng Liu(CMCC) Oscar Gonzalez de Dios (Telefonica) oscarigor	Bell	Telefini
Mehdi Bezohaf, Loncoster University, mehdi bezohafigi Spencer Dawkins, Tencent America Luis M. Contreros, Telefonica, Jusmiquel contrerosmurili	Unical constants an unit (Herromica) inical got Brian Trammell (Google) Shumvan Zhuang (Huavei) Yingzhen Qu (Futurewei) Torn Hill (B1)	中国移动 China Mobile	Ching unicom@like
Munir Ahmad, Bell Canada Danist Kang Jim Gulchard, Futurewei, jamesin gulchardi@futurewei.c	Tom Herbert (Intel) Frode Sorensen (Nikom) frode sorensen((Prikor Uma Chundur (Poturewel Inc., USA) Dates Dawei FAN(Huowe) Joeg Solatar (ARTICLE IV)	۲	
Sore Allokhon, Bell Canada, sanaakakhongbell ca Toerkes Ecken (Triumreve), teeljica, fau de - pileae add Diego Lapez, Telefonica, diego:/opez@telefonica.com Daniel Bennier, daniel.bennier@bell.ca Habyu Song(Futurnvet)	Pablo Camarillo (Cisco) Stefano Previdi (Huawet) Yali Wang (Huawet) Georgios Karagiannis (Huawet)	(intel)	
Lons Eggent Colin Perkims Tim Chown (Jac) Kiron Mokhijani			

https://github.com/APN-Community

	1	ETF111 APN Bo	F
Friday, July 30, 2021			
11:00-18:00 Gather		Secretariat "Registration" Desk	C V & 🖱
12:00-18:00 Gather		IANA Office Hours	C V & 🖱
12:00-18:00 Gather		RFC Editor Office Hours	C V & 🖱
12:00-14:00 Friday S	ession I		
Room 1	art webtrans	WebTransport	₿१∎∩≞
Room 2	int add	Adaptive DNS Discovery	₿१∎∩≞
Room 3	irtf gaia	Global Access to the Internet for All	ଡ ହ ∎∩≞
Room 4	ops mboned	MBONE Deployment	₿१∎∩
Room 5	rtg apn	Application-aware Networking	80F 🛛 🖓 🔳 🖓 🗒
Room 6	sec suit	Software Updates for Internet of Things	ଓ ହ ∎Ω≞
Room 6	sec suit	Software Updates for Internet of Things	ߢ


<section-header><section-header><section-header><text><text><text><text>

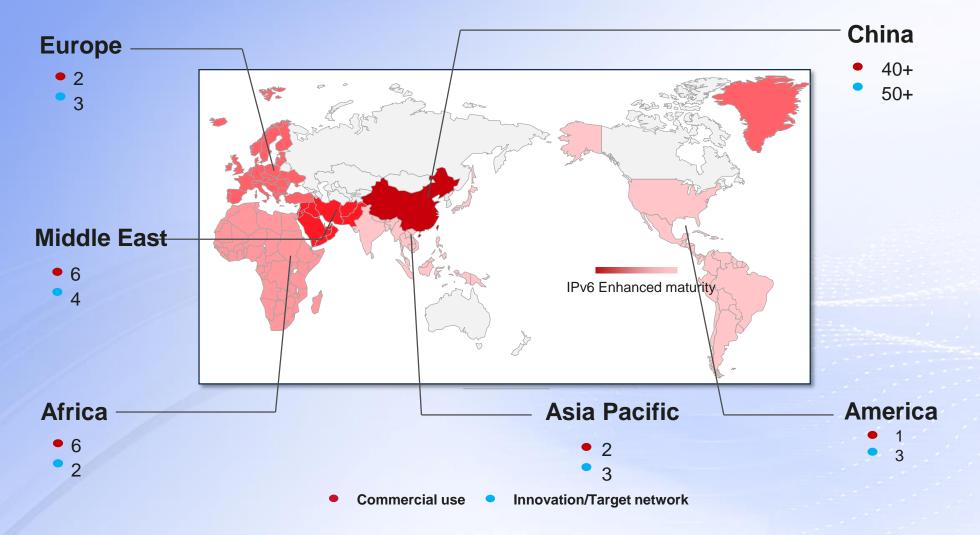
https://www.ietf.org/blog/ietf109-bofs/ https://www.ietf.org/blog/ietf110-bofs/ https://trac.tools.ietf.org/bof/trac/wiki/WikiStart (IETF111 BoF)


Summary of Usage of IPv6 Enhanced Extension Headers

Functionalities	RFC/Drafts	IPv6 Extension Header		
Functionalities		HBH Header	Routing Header	DO Header
SRv6	RFC8754		V	
VPN+ (Network Slicing)	 draft-ietf-spring-resource-aware-segments draft-ietf-6man-enhanced-vpn-vtn-id 	٧	v	
IFIT (In-situ Flow Telemetry)	 draft-ietf-6man-ipv6-alt-mark draft-ietf-ippm-ioam-data draft-ietf-ippm-ioam-ipv6-options 	V	V	V
MSR6/BIERv6	1. draft-lx-msr6-rgb-segment 2. draft-geng-msr6-traffic-engineering		٧	V
APN6	1. draft-li-apn-header 2. draft-li-apn-ipv6-encap	V	٧	V

IPv6 Enhanced Standardization Work Layout

ETSI New ISG IPE (IPv6 Enhanced)



Jointly make an Open Platform for IP Industry

Complete industry chain in ISG IPE: Operators from different reality, Major Device Vendors, Verticals and Academia

World-Wide IPv6 Enhanced Deployments are Booming

IPv6 Enhanced Deployment: 100+ SRv6; 30+ IP Network Slicing

IPv6 Enhanced Series Books and Videos

BIERv6

IPv6 Enhanced Books

IPv6 Enhanced Series Books

IPv6 Enhanced Series Videos

CRC Pre

* AREGARE

IP Network eBook Series SRv6

IP Network eBook Series IFIT

34

36

(Video) IP New Technology Series (Advanced) - Deep Dive into EVPN L3VPNv4 over SRv6 TE Policy

IP Network eBook Series **IP Network Slicing**

34

44

APN6

IP Network eBook Series

(Video) IP New Technology Series (Advanced) - Segment Routing IPv6 (SRv6)

(Video) IP New Technology Series (Advanced) - Segment Routing MPLS (SR-MPLS)

(Video) IP New Technology Series (Advanced) - Deep Dive into Ping & Tracert for SRv6

IPv6 Enhanced Series Books and Videos

IPv6 Enhanced Books

https://www.amazon.com/SRv6-Network-Programming-Ushering-Communication/dp/1032016248

IPv6 Enhanced Series eBooks

Scan to obtain the electronic version

https://e.huawei.com/en/material/bookshelf/bookshelfview/202109/29105716

IPv6 Enhanced Series Videos

https://support.huawei.com/enterprise/en/routers/netengine-8000-pid-252772223/multimedia

THANKS !

Å